Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 99(3): 470-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26202476

RESUMO

As it became evident recently, extracellular DNA could be a versatile nutrient source of the facultative pathogen Vibrio cholerae along the different stages of its life cycle. By the use of two extracellular nucleases and periplasmic phosphatases, V. cholerae degrades extracellular DNA to nucleosides. In this study, we investigated the nucleoside uptake via identification and characterization of VCA0179, VC1953 and VC2352 representing the three nucleoside transport systems in V. cholerae. Based on our results VC2352 seems to be the dominant nucleoside transporter. Nevertheless, all three transporters are functional and can contribute to the utilization of nucleosides as a sole source of carbon or nitrogen. We found that the transcriptional activity of these three distal genes is equally promoted or antagonized by CRP or CytR respectively. Finally, mutants impaired for nucleoside uptake exhibit decreased transition fitness from the host into low carbon environments along the life cycle of V. cholerae.


Assuntos
Cólera/microbiologia , Nucleosídeos/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cólera/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Vibrio cholerae/genética
2.
Int J Med Microbiol ; 304(5-6): 749-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24962154

RESUMO

The facultative human pathogen Vibrio cholerae, the causative agent of the severe secretory diarrheal disease cholera, persists in its aquatic reservoirs in biofilms during interepidemic periods. Biofilm is a likely form in which clinically relevant V. cholerae is taken up by humans, providing an infective dose. Thus, a better understanding of biofilm formation of V. cholerae is relevant for the ecology and epidemiology of cholera as well as a target to control the disease. Most previous studies have investigated static biofilms of V. cholerae and elucidated structural prerequisites like flagella, pili and a biofilm matrix including extracellular DNA, numerous matrix proteins and exopolysaccharide, as well as the involvement of regulatory pathways like two-component systems, quorum sensing and c-di-GMP signaling. However, aquatic environments are more likely to reflect an open, dynamic system. Hence, we used a biofilm system with constant medium flow and a temporal controlled reporter-system of transcription to identify genes induced during dynamic biofilm formation. We identified genes known or predicted to be involved in c-di-GMP signaling, motility and chemotaxis, metabolism, and transport. Subsequent phenotypic characterization of mutants with independent mutations in candidate dynamic biofilm-induced genes revealed novel insights into the physiology of static and dynamic biofilm conditions. The results of this study also reinforce the hypotheses that distinct differences in regulatory mechanisms governing biofilm development are present under dynamic conditions compared to static conditions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genes Bacterianos , Vibrio cholerae/fisiologia , Fusão Gênica Artificial , Microbiologia Ambiental , Genes Reporter , Humanos , Vibrio cholerae/genética
3.
PLoS Pathog ; 9(9): e1003614, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039581

RESUMO

The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.


Assuntos
Proteínas de Bactérias , Cólera , Desoxirribonucleases , Viabilidade Microbiana , Neutrófilos , Vibrio cholerae , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Cólera/enzimologia , Cólera/genética , Cólera/imunologia , Cólera/patologia , Desoxirribonucleases/genética , Desoxirribonucleases/imunologia , Desoxirribonucleases/metabolismo , Imunidade Inata/genética , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Vibrio cholerae/enzimologia , Vibrio cholerae/genética , Vibrio cholerae/imunologia
4.
Mol Microbiol ; 89(5): 816-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23782391

RESUMO

Multi-drug resistant strains of Acinetobacter baumannii are increasingly being isolated in hospitals worldwide. Among the virulence factors identified in this bacterium there is a general O-glycosylation system that appears to be important for biofilm formation and virulence, and the capsular polysaccharide, which is essential for resistance to complement killing. In this work, we identified a locus that is responsible for the synthesis of the O-pentasaccharide found on the glycoproteins. Besides the enzymes required for the assembly of the glycan, additional proteins typically involved in polymerization and transport of capsule were identified within or adjacently to the locus. Mutagenesis of PglC, the initiating glycosyltransferase prevented the synthesis of both glycoproteins and capsule, resulting in abnormal biofilm structures and attenuated virulence in mice. These results, together with the structural analysis of A. baumannii 17978 capsular polysaccharide via NMR, demonstrated that the pentasaccharides that decorate the glycoproteins are also the building blocks for capsule biosynthesis. Two linked subunits, but not longer glycan chains, were detected on proteins via MS. The discovery of a bifurcated pathway for O-glycosylation and capsule synthesis not only provides insight into the biology of A. baumannii but also identifies potential novel candidates for intervention against this emerging pathogen.


Assuntos
Acinetobacter baumannii/metabolismo , Cápsulas Bacterianas/metabolismo , Redes e Vias Metabólicas/genética , Processamento de Proteína Pós-Traducional , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/fisiologia , Animais , Cápsulas Bacterianas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Glicosilação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Virulência
5.
J Bacteriol ; 195(8): 1800-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23417487

RESUMO

The facultative human pathogen Vibrio cholerae transits between the gastrointestinal tract of its host and aquatic reservoirs. V. cholerae adapts to different situations by the timely coordinated expression of genes during its life cycle. We recently identified a subclass of genes that are induced at late stages of infection. Initial characterization demonstrated that some of these genes facilitate the transition of V. cholerae from host to environmental conditions. Among these genes are uptake systems lacking detailed characterization or correct annotation. In this study, we comprehensively investigated the function of the VCA0682-to-VCA0687 gene cluster, which was previously identified as in vivo induced. The results presented here demonstrate that the operon encompassing open reading frames VCA0685 to VCA0687 encodes an ABC transport system for hexose-6-phosphates with Km values ranging from 0.275 to 1.273 µM for glucose-6P and fructose-6P, respectively. Expression of the operon is induced by the presence of hexose-6P controlled by the transcriptional activator VCA0682, representing a UhpA homolog. Finally, we provide evidence that the operon is essential for the utilization of hexose-6P as a C and P source. Thereby, a physiological role can be assigned to hexose-6P uptake, which correlates with increased fitness of V. cholerae after a transition from the host into phosphate-limiting environments.


Assuntos
Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Hexosefosfatos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosfatos/metabolismo , Vibrio cholerae/metabolismo , Transporte Biológico Ativo/fisiologia , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , DNA Bacteriano , Cinética , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Plasmídeos , Vibrio cholerae/genética
6.
PLoS One ; 7(10): e47756, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144706

RESUMO

Virulence factor production in Vibrio cholerae is complex, with ToxRS being an important part of the regulatory cascade. Additionally, ToxR is the transcriptional regulator for the genes encoding the major outer membrane porins OmpU and OmpT. ToxR is a transmembrane protein and contains two cysteine residues in the periplasmic domain. This study addresses the influence of the thiol-disulfide oxidoreductase system DsbAB, ToxR cysteine residues and ToxR/ToxS interaction on ToxR activity. The results show that porin production correlates with ToxR intrachain disulfide bond formation, which depends on DsbAB. In contrast, formation of ToxR intrachain or interchain disulfide bonds is dispensable for virulence factor production and in vivo colonization. This study further reveals that in the absence of ToxS, ToxR interchain disulfide bond formation is facilitated, whereat cysteinyl dependent homo- and oligomerization of ToxR is suppressed if ToxS is coexpressed. In summary, new insights into gene regulation by ToxR are presented, demonstrating a mechanism by which ToxR activity is linked to a DsbAB dependent intrachain disulfide bond formation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dissulfetos/metabolismo , Fatores de Transcrição/metabolismo , Vibrio cholerae/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cólera/genética , Cólera/microbiologia , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dissulfetos/química , Regulação Bacteriana da Expressão Gênica , Immunoblotting , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Periplasma/metabolismo , Porinas/genética , Porinas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Multimerização Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/química , Fatores de Transcrição/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Virulência/genética
7.
PLoS Pathog ; 8(6): e1002758, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685409

RESUMO

Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening "superbugs" for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics.


Assuntos
Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Proteínas de Bactérias/metabolismo , Biofilmes , Glicoproteínas/metabolismo , Infecções por Acinetobacter/metabolismo , Animais , Western Blotting , Técnicas de Inativação de Genes , Glicosilação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Virulência
8.
Mol Microbiol ; 82(4): 1015-37, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22032623

RESUMO

Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Desoxirribonucleases/metabolismo , Vibrio cholerae/enzimologia , Vibrio cholerae/fisiologia , Aderência Bacteriana , Matriz Extracelular/química , Matriz Extracelular/metabolismo
9.
J Lipid Res ; 50(12): 2514-23, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19723663

RESUMO

Excess dietary vitamin A is esterified with fatty acids and stored in the form of retinyl ester (RE) predominantly in the liver. According to the requirements of the body, liver RE stores are hydrolyzed and retinol is delivered to peripheral tissues. The controlled mobilization of retinol ensures a constant supply of the body with the vitamin. Currently, the enzymes catalyzing liver RE hydrolysis are unknown. In this study, we identified mouse esterase 22 (Es22) as potent RE hydrolase highly expressed in the liver, particularly in hepatocytes. The enzyme is located exclusively at the endoplasmic reticulum (ER), implying that it is not involved in the mobilization of RE present in cytosolic lipid droplets. Nevertheless, cell culture experiments revealed that overexpression of Es22 attenuated the formation of cellular RE stores, presumably by counteracting retinol esterification at the ER. Es22 was previously shown to form a complex with beta-glucuronidase (Gus). Our studies revealed that Gus colocalizes with Es22 at the ER but does not affect its RE hydrolase activity. Interestingly, however, Gus was capable of hydrolyzing the naturally occurring vitamin A metabolite retinoyl beta-glucuronide. In conclusion, our observations implicate that both Es22 and Gus play a role in liver retinoid metabolism.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Glucuronidase/metabolismo , Fígado/metabolismo , Retinoides/metabolismo , Animais , Células COS , Chlorocebus aethiops , Hidrólise , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...