Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nutrients ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904166

RESUMO

In a rat model, following exposure to rat folate receptor alpha antibodies (FRαAb) during gestation, FRαAb accumulates in the placenta and the fetus and blocks folate transport to the fetal brain and produces behavioral deficits in the offspring. These deficits could be prevented with folinic acid. Therefore, we sought to evaluate folate transport to the brain in young rat pups and determine what effect FRαAb has on this process, to better understand the folate receptor autoimmune disorder associated with cerebral folate deficiency (CFD) in autism spectrum disorders (ASD). When injected intraperitoneally (IP), FRαAb localizes to the choroid plexus and blood vessels including the capillaries throughout the brain parenchyma. Biotin-tagged folic acid shows distribution in the white matter tracts in the cerebrum and cerebellum. Since these antibodies can block folate transport to the brain, we orally administered various folate forms to identify the form that is better-absorbed and transported to the brain and is most effective in restoring cerebral folate status in the presence of FRαAb. The three forms of folate, namely folic acid, D,L-folinic acid and levofolinate, are converted to methylfolate while L-methylfolate is absorbed as such and all are efficiently distributed to the brain. However, significantly higher folate concentration is seen in the cerebrum and cerebellum with levofolinate in the presence or absence of FRαAb. Our results in the rat model support testing levofolinate to treat CFD in children with ASD.


Assuntos
Deficiência de Ácido Fólico , Ácido Fólico , Gravidez , Feminino , Ratos , Animais , Leucovorina , Receptor 1 de Folato/metabolismo , Anticorpos , Encéfalo/metabolismo
2.
Nutrients ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745126

RESUMO

Food fortification and folic acid supplementation during pregnancy have been implemented as strategies to prevent fetal malformations during pregnancy. However, with the emergence of conditions where folate metabolism and transport are disrupted, such as folate receptor alpha autoantibody (FRαAb)-induced folate deficiency, it is critical to find a folate form that is effective and safe for pharmacologic dosing for prolonged periods. Therefore, in this study, we explored the absorption and tissue distribution of folic acid (PGA), 5-methyl-tetrahydrofolate (MTHF), l-folinic acid (levofolinate), and d,l-folinic acid (Leucovorin) in adult rats. During absorption, all forms are converted to MTHF while some unconverted folate form is transported into the blood, especially PGA. The study confirms the rapid distribution of absorbed folate to the placenta and fetus. FRαAb administered, also accumulates rapidly in the placenta and blocks folate transport to the fetus and high folate concentrations are needed to circumvent or overcome the blocking of FRα. In the presence of FRαAb, both Leucovorin and levofolinate are absorbed and distributed to tissues better than the other forms. However, only 50% of the leucovorin is metabolically active whereas levofolinate is fully active and generates higher tetrahydrofolate (THF). Because levofolinate can readily incorporate into the folate cycle without needing methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) in the first pass and is relatively stable, it should be the folate form of choice during pregnancy, other disorders where large daily doses of folate are needed, and food fortification.


Assuntos
Ácido Fólico , Animais , Feminino , Gravidez , Ratos , Suplementos Nutricionais , Leucovorina , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Tetra-Hidrofolatos/metabolismo , Distribuição Tecidual
3.
FASEB J ; 36(4): e22222, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218573

RESUMO

Cellular uptake of vitamin B12 in humans is mediated by the endocytosis of the B12 carrier protein transcobalamin (TC) via its cognate cell surface receptor TCblR, encoded by the CD320 gene. Because CD320 expression is associated with the cell cycle and upregulated in highly proliferating cells including cancer cells, this uptake route is a potential target for cancer therapy. We developed and characterized four camelid nanobodies that bind holo-TC (TC in complex with B12 ) or the interface of the human holo-TC:TCblR complex with nanomolar affinities. We determined X-ray crystal structures of these nanobodies bound to holo-TC:TCblR, which enabled us to map their binding epitopes. When conjugated to the model toxin saporin, three of our nanobodies caused growth inhibition of HEK293T cells and therefore have the potential to inhibit the growth of human cancer cells. We visualized the cellular binding and endocytic uptake of the most potent nanobody (TC-Nb4) using fluorescent light microscopy. The co-crystal structure of holo-TC:TCblR with another nanobody (TC-Nb34) revealed novel features of the interface of TC and the LDLR-A1 domain of TCblR, rationalizing the decrease in the affinity of TC-B12 binding caused by the Δ88 mutation in CD320.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/farmacologia , Receptores de Superfície Celular/metabolismo , Saporinas/química , Anticorpos de Domínio Único/química , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Camelídeos Americanos , Ciclo Celular , Proliferação de Células , Células HEK293 , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunotoxinas/química , Imunotoxinas/farmacologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Saporinas/imunologia , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/imunologia
4.
J Pers Med ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34442354

RESUMO

Folate deficiency and folate receptor autoimmune disorder are major contributors to infertility, pregnancy related complications and abnormal fetal development including structural and functional abnormalities of the brain. Food fortification and prenatal folic acid supplementation has reduced the incidence of neural tube defect (NTD) pregnancies but is unlikely to prevent pregnancy-related complications in the presence of folate receptor autoantibodies (FRAb). In pregnancy, these autoantibodies can block folate transport to the fetus and in young children, folate transport to the brain. These antibodies are prevalent in neural tube defect pregnancies and in developmental disorders such as cerebral folate deficiency (CFD) syndrome and autism spectrum disorder (ASD). In the latter conditions, folinic acid treatment has shown clinical improvement in some of the core ASD deficits. Early testing for folate receptor autoantibodies and intervention is likely to result in a positive outcome. This review discusses the first identification of FRAb in women with a history of neural tube defect pregnancy and FRAb's association with sub-fertility and preterm birth. Autoantibodies against folate receptor alpha (FRα) are present in about 70% of the children with a diagnosis of ASD, and a significant number of these children respond to oral folinic acid with overall improvements in speech, language and social interaction. The diagnosis of folate receptor autoimmune disorder by measuring autoantibodies against FRα in the serum provides a marker with the potential for treatment and perhaps preventing the pathologic consequences of folate receptor autoimmune disorder.

5.
Autism Res Treat ; 2020: 9095284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294225

RESUMO

BACKGROUND: Biomarkers such as oxidative stress, folate receptor alpha (FRα) autoimmunity, and abnormal brain serotonin turnover are common in autism. METHODS: Oxidative stress biomarkers with pro- and antioxidants were measured in the severe form of infantile autism (n = 38) and controls (n = 24). Children and parents had repeated testing for serum FR autoantibodies, spinal fluid dopamine and serotonin metabolites, pterins, and N5-methyltetrahydrofolate (MTHF). Statistical analysis assessed correlations between variables. Genetic analysis included the SLC6A4 and SLC29A4 genes encoding synaptic serotonin reuptake proteins. RESULTS: Compared to controls, the autism group showed a significant increase in oxidative DNA damage in lymphocytes, plasma ceruloplasmin and copper levels with a high copper/zinc ratio, thiol proteins, and superoxide dismutase (SOD) activity. Vitamin C levels were significantly diminished. In most autistic patients, the vitamin A (64%) and D (70%) levels were low. Serum FR autoantibodies fluctuating over 5-7 week periods presented in 68% of all autistic children, 41% of parents vs. 3.3% of control children and their parents. CSF showed lowered serotonin 5-hydroxyindole acetic acid (5HIAA) metabolites in 13 (34%), a low 5HIAA to HVA (dopamine metabolite) ratio in 5 (13%), low 5HIAA and MTHF in 2 (5%), and low MTHF in 8 patients (21%). A known SLC6A4 mutation was identified only in 1 autistic child with low CSF 5HIAA and a novel SLC29A4 mutation was identified in identical twins. Low CSF MTHF levels among only 26% of subjects can be explained by the fluctuating FR antibody titers. Two or more aberrant pro-oxidant and/or antioxidant factors predisposed to low CSF serotonin metabolites. Three autistic children having low CSF 5HIAA and elevated oxidative stress received antioxidative supplements followed by CSF 5HIAA normalisation. CONCLUSION: In autism, we found diverse combinations for FR autoimmunity and/or oxidative stress, both amenable to treatment. Parental and postnatal FR autoantibodies tend to block folate passage to the brain affecting folate-dependent pathways restored by folinic acid treatment, while an abnormal redox status tends to induce reduced serotonin turnover, corrected by antioxidant therapy. Trial Registration. The case-controlled study was approved in 2008 by the IRB at Liège University (Belgian Number: B70720083916). Lay Summary. Children with severe infantile autism frequently have serum folate receptor autoantibodies that block the transport of the essential vitamin folate across the blood-brain barrier to the brain. Parents are often asymptomatic carriers of these serum folate receptor autoantibodies, which in mothers can block folate passage across the placenta to their unborn child. This folate deficiency during the child's intrauterine development may predispose to neural tube defects and autism. Oxidative stress represents a condition with the presence of elevated toxic oxygen derivatives attributed to an imbalance between the formation and protection against these toxic reactive oxygen derivatives. Oxidative stress was found to be present in autistic children where these reactive oxygen derivatives can cause damage to DNA, which changes DNA function and regulation of gene expression. In addition, excessive amounts of these toxic oxygen derivatives are likely to damage the enzyme producing the neuromessenger serotonin in the brain, diminished in about 1/3 of the autistic children. Testing children with autism for oxidative stress and its origin, as well as testing for serum folate receptor autoantibodies, could open new approaches towards more effective treatments.

6.
Exp Cell Res ; 396(1): 112256, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898552

RESUMO

Cellular uptake of vitamin B12 (cobalamin, Cbl) is mediated by a cell surface receptor (TCblR/CD320) that binds transcobalamin (TC) saturated with Cbl. TC is secreted by the vascular endothelium, has a relatively short half-life, binds Cbl with high affinity and presents the vitamin to the receptor for cellular uptake. Here we show binding and internalization of the TC-Cbl complex along with its' receptor (TCblR) in several human cell lines. The expression of TCblR is linked to the cell cycle with highest expression in actively proliferating cells. Upon binding TC-Cbl, the receptors appear to segregate on the plasma membrane and are internalized over the course of 30-60 min. Subsequently, the receptors appear to be destroyed along with the TC, which results in the release of free Cbl in the lysosome. The appearance of TCblR on the cell surface is limited to newly synthesized protein without contribution from recycling of the receptor. Therefore, Cbl uptake into cells is fully dependent on the expression of newly synthesized TCblR that is up-regulated in actively proliferating cells. The cell cycle-associated up-regulation of TCblR in cancers provides a route for targeted drug delivery.


Assuntos
Antígenos CD/genética , Biossíntese de Proteínas , Receptores de Superfície Celular/genética , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo , Antígenos CD/metabolismo , Transporte Biológico , Ciclo Celular/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Endocitose , Regulação da Expressão Gênica , Células HEK293 , Células HL-60 , Meia-Vida , Humanos , Células K562 , Cinética , Lisossomos/metabolismo , Células MCF-7 , Receptores de Superfície Celular/metabolismo
7.
Autism Res Treat ; 2019: 7486431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316831

RESUMO

BACKGROUND: In contrast to multiple rare monogenetic abnormalities, a common biomarker among children with infantile autism and their parents is the discovery of serum autoantibodies directed to the folate receptor alpha (FRα) localized at blood-brain and placental barriers, impairing physiologic folate transfer to the brain and fetus. Since outcome after behavioral intervention remains poor, a trial was designed to treat folate receptor alpha (FRα) autoimmunity combined with correction of deficient nutrients due to abnormal feeding habits. METHODS: All participants with nonsyndromic infantile autism underwent a routine protocol measuring CBC, iron, vitamins, coenzyme Q10, metals, and trace elements. Serum FRα autoantibodies were assessed in patients, their parents, and healthy controls. A self-controlled therapeutic trial treated nutritional derangements with addition of high-dose folinic acid if FRα autoantibodies tested positive. The Childhood Autism Rating Scale (CARS) monitored at baseline and following 2 years of treatment was compared to the CARS of untreated autistic children serving as a reference. RESULTS: In this self-controlled trial (82 children; mean age ± SD: 4.4 ± 2.3 years; male:female ratio: 4.8:1), FRα autoantibodies were found in 75.6 % of the children, 34.1 % of mothers, and 29.4 % of fathers versus 3.3 % in healthy controls. Compared to untreated patients with autism (n=84) whose CARS score remained unchanged, a 2-year treatment decreased the initial CARS score from severe (mean ± SD: 41.34 ± 6.47) to moderate or mild autism (mean ± SD: 34.35 ± 6.25; paired t-test p<0.0001), achieving complete recovery in 17/82 children (20.7 %). Prognosis became less favorable with the finding of higher FRα autoantibody titers, positive maternal FRα autoantibodies, or FRα antibodies in both parents. CONCLUSIONS: Correction of nutritional deficiencies combined with high-dose folinic acid improved outcome for autism, although the trend of a poor prognosis due to maternal FRα antibodies or FRα antibodies in both parents may warrant folinic acid intervention before conception and during pregnancy.

8.
J Pathol ; 248(3): 291-303, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30734924

RESUMO

The pathomechanisms that associate a deficit in folate and/or vitamin B12 and the subsequent hyperhomocysteinemia with pathological brain ageing are unclear. We investigated the homocysteinylation of microtubule-associated proteins (MAPs) in brains of patients with Alzheimer's disease or vascular dementia, and in rats depleted in folate and vitamin B12, Cd320 KO mice with selective B12 brain deficiency and H19-7 neuroprogenitors lacking folate. Compared with controls, N-homocysteinylated tau and MAP1 were increased and accumulated in protein aggregates and tangles in the cortex, hippocampus and cerebellum of patients and animals. N-homocysteinylation dissociated tau and MAPs from ß-tubulin, and MS analysis showed that it targets lysine residues critical for their binding to ß-tubulin. N-homocysteinylation increased in rats exposed to vitamin B12 and folate deficit during gestation and lactation and remained significantly higher when they became 450 days-old, despite returning to normal diet at weaning, compared with controls. It was correlated with plasma homocysteine (Hcy) and brain expression of methionine tRNAsynthetase (MARS), the enzyme required for the synthesis of Hcy-thiolactone, the substrate of N-homocysteinylation. Experimental inactivation of MARS prevented the N-homocysteinylation of tau and MAP1, and the dissociation of tau and MAP1 from ß-tubulin and PSD95 in cultured neuroprogenitors. In conclusion, increased N-homocysteinylation of tau and MAP1 is a mechanism of brain ageing that depends on Hcy concentration and expression of MARS enzyme. Its irreversibility and cumulative occurrence throughout life may explain why B12 and folate supplementation of the elderly has limited effects, if any, to prevent pathological brain ageing and cognitive decline. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença de Alzheimer/patologia , Demência Vascular/patologia , Hiper-Homocisteinemia/patologia , Proteínas tau/metabolismo , Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Animais , Autopsia/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Demência Vascular/metabolismo , Feminino , Humanos , Camundongos Knockout , Ratos
9.
FASEB J ; 33(2): 2563-2573, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30303736

RESUMO

In humans, vitamin B12 deficiency causes peripheral and CNS manifestations. Loss of myelin in the peripheral nerves and the spinal cord (SC) contributes to peripheral neuropathy and motor deficits. The metabolic basis for the demyelination and brain disorder is unknown. The transcobalamin receptor-knockout mouse ( Cd320-/-) develops cobalamin (Cbl) deficiency in the nervous system, with mild anemia. A decreased S-adenosylmethionine: S-adenosylhomocysteine ratio and increased methionine were seen in the brain with no significant changes in neurotransmitter metabolites. The structural pathology in the SC presented as loss of myelin in the axonal tracts with inflammation. The sciatic nerve (SN) showed increased nonuniform, internodal segments suggesting demyelination, and remyelination in progress. Consistent with these changes, the Cd320-/- mouse showed an increased latency to thermal nociception. Further, lower amplitude of compound action potential in the SN suggested that the functional capacity of the heavily myelinated axons were preferentially compromised, leading to loss of peripheral sensation. Although the metabolic basis for the demyelination and the structural and functional alterations of the nervous system in Cbl deficiency remain unresolved, the Cd320-/- mouse provides a unique model to investigate the pathologic consequences of vitamin B12 deficiency. -Arora, K., Sequeira, J. M., Alarcon, J. M., Wasek, B., Arning, E., Bottiglieri, T., Quadros, E. V. Neuropathology of vitamin B12 deficiency in the Cd320-/- mouse.


Assuntos
Encéfalo/patologia , Doenças do Sistema Nervoso/patologia , Nociceptividade , Receptores de Superfície Celular/fisiologia , Deficiência de Vitamina B 12/complicações , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Neurotransmissores/metabolismo , Deficiência de Vitamina B 12/fisiopatologia
10.
Nucleic Acids Res ; 46(15): 7844-7857, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30016500

RESUMO

The molecular mechanisms that underlie the neurological manifestations of patients with inherited diseases of vitamin B12 (cobalamin) metabolism remain to date obscure. We observed transcriptomic changes of genes involved in RNA metabolism and endoplasmic reticulum stress in a neuronal cell model with impaired cobalamin metabolism. These changes were related to the subcellular mislocalization of several RNA binding proteins, including the ELAVL1/HuR protein implicated in neuronal stress, in this cell model and in patient fibroblasts with inborn errors of cobalamin metabolism and Cd320 knockout mice. The decreased interaction of ELAVL1/HuR with the CRM1/exportin protein of the nuclear pore complex and its subsequent mislocalization resulted from hypomethylation at R-217 produced by decreased S-adenosylmethionine and protein methyl transferase CARM1 and dephosphorylation at S221 by increased protein phosphatase PP2A. The mislocalization of ELAVL1/HuR triggered the decreased expression of SIRT1 deacetylase and genes involved in brain development, neuroplasticity, myelin formation, and brain aging. The mislocalization was reversible upon treatment with siPpp2ca, cobalamin, S-adenosylmethionine, or PP2A inhibitor okadaic acid. In conclusion, our data highlight the key role of the disruption of ELAVL1/HuR nuclear export, with genomic changes consistent with the effects of inborn errors of Cbl metabolisms on brain development, neuroplasticity and myelin formation.


Assuntos
Transporte Biológico/genética , Proteína Semelhante a ELAV 1/metabolismo , Carioferinas/metabolismo , Doenças Metabólicas/genética , Proteínas de Ligação a RNA/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Vitamina B 12/metabolismo , Animais , Encéfalo/patologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático/genética , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Okadáico/farmacologia , Fosforilação , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/farmacologia , RNA Mensageiro/metabolismo , S-Adenosilmetionina/farmacologia , Sirtuína 1/biossíntese , Proteína Exportina 1
11.
Autism Res ; 11(5): 707-712, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29394471

RESUMO

Folate deficiency can affect fetal and neonatal brain development Considering the reported association of Folate receptor alpha (FRα) autoantibodies (Abs) with autism and developmental disorders, we sought to confirm this in families of 82 children with ASD, 53 unaffected siblings, 65 fathers, and 70 mothers, along with 52 unrelated normal controls. Overall, 76% of the affected children, 75% of the unaffected siblings, 69% of fathers and 59% of mothers were positive for either blocking or binding Ab, whereas the prevalence of this Ab in the normal controls was 29%. The Ab was highly prevalent in affected families including unaffected siblings. The appearance of these antibodies may have a familial origin but the risk of developing ASD is likely influenced by other mitigating factors since some siblings who had the antibodies were not affected. The antibody response appears heritable with the blocking autoantibody in the parents and affected child increasing the risk of ASD. Autism Res 2018, 11: 707-712. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Folate is an essential nutrient during fetal and infant development. Autoantibodies against the folate receptor alpha can block folate transport from the mother to the fetus and to the brain in infants. Children diagnosed with autism and their immediate family members were evaluated for the prevalence of folate receptor autoantibodies. The autoantibody was highly prevalent in affected families with similar distribution in parents, normal siblings and affected children. The presence of these antibodies appears to have a familial origin and may contribute to developmental deficits when combined with other factors.


Assuntos
Transtorno do Espectro Autista/imunologia , Autoanticorpos/imunologia , Receptor 1 de Folato/imunologia , Pais , Irmãos , Adulto , Transtorno do Espectro Autista/diagnóstico , Criança , Pré-Escolar , Feminino , Humanos , Masculino
12.
PLoS One ; 12(5): e0177156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545069

RESUMO

Vitamin B12 (cobalamin) deficiency is prevalent worldwide and causes megaloblastic anemia and neurologic deficits. While the anemia can be treated, the neurologic deficits can become refractive to treatment as the disease progresses. Therefore, timely intervention is critical for a favorable outcome. Moreover, the metabolic basis for the neuro-pathologic changes and the role of cobalamin deficiency in the pathology still remains unexplained. Using a transcobalamin receptor / CD320 knockout mouse that lacks the receptor for cellular uptake of transcobalamin bound cobalamin, we aimed to determine whether cobalamin deficiency in the central nervous system produced functional neurologic deficits in the mouse that would parallel those observed in humans. Our behavioral analyses indicate elevated anxiety and deficits in learning, memory and set-shifting of a spatial memory task in the KO mouse. Consistent with the behavioral deficits, the knockout mouse shows impaired expression of the early phase of hippocampal long-term potentiation along with reduced expression of GluR1, decreased brain mass and a significant reduction in the size of nuclei of the hippocampal pyramidal neurons. Our study suggests that the CD320 knockout mouse develops behavioral deficits associated with cobalamin deficiency and therefore could provide a model to understand the metabolic and genetic basis of neuro-pathologic changes due to cobalamin deficiency.


Assuntos
Hipocampo/patologia , Receptores de Superfície Celular/genética , Deficiência de Vitamina B 12/genética , Animais , Transtornos de Ansiedade/genética , Aprendizagem da Esquiva , Comportamento Animal , Aprendizagem , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Células Piramidais/patologia , Receptores de AMPA/metabolismo
13.
FASEB J ; 31(7): 3098-3106, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28351841

RESUMO

Vitamin B12 deficiency causes megaloblastic anemia and neurologic disorder in humans. Gene defects of transcobalamin (TC) and the transcobalamin receptor (TCblR), needed for cellular uptake of the TC-bound B12, do not confer embryonic lethality. TC deficiency can produce the hematologic and neurologic complications after birth, whereas TCblR/CD320 gene defects appear to produce mild metabolic changes. Alternate maternofetal transport mechanisms appear to provide adequate B12 to the fetus. To understand this mechanism, we evaluated the role of TC, TCblR/CD320, and megalin in maternofetal transport of B12 in a TCblR/CD320-knockout (KO) mouse. Our results showed high expression of TCblR/CD320 in the labyrinth of the placenta, embryonic brain, and spinal column in wild-type (WT) mice. Megalin expression was about the same in both WT and KO mouse visceral yolk sac, brain, and spinal column. Megalin mRNA was down-regulated in the KO embryonic spinal cord (SC) and kidneys. Megalin expression remained unaltered in adult WT and KO mouse brain, SC, and kidneys. Injected dsRed-TC-B12 and TC-57CoB12 accumulated in the visceral yolk sac of KO mice where megalin is expressed and provides an alternate mechanism for the maternofetal transport of Cbl during fetal development.-Arora, K., Sequeira, J. M., Quadros, E. V. Maternofetal transport of vitamin B12: role of TCblR/CD320 and megalin.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Troca Materno-Fetal/fisiologia , Receptores de Superfície Celular/fisiologia , Vitamina B 12/metabolismo , Animais , Transporte Biológico , Sistema Nervoso Central/metabolismo , Feminino , Rim/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Placenta/metabolismo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual , Saco Vitelino/metabolismo
14.
Front Neurosci ; 10: 80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013943

RESUMO

Folate receptor α (FRα) autoantibodies (FRAAs) are prevalent in autism spectrum disorder (ASD). They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD and FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristics. Thus, in this study we measured both blocking and binding FRAAs, physiological measurements including indices of redox and methylation metabolism and inflammation as well as serum folate and B12 concentrations and measurements of development and behavior in 94 children with ASD. Children positive for the binding FRAA were found to have higher serum B12 levels as compared to those negative for binding FRAAs while children positive for the blocking FRAA were found to have relatively better redox metabolism and inflammation markers as compared to those negative for blocking FRAAs. In addition, ASD children positive for the blocking FRAA demonstrated better communication on the Vineland Adaptive Behavior Scale, stereotyped behavior on the Aberrant Behavioral Checklist and mannerisms on the Social Responsiveness Scale. This study suggests that FRAAs are associated with specific physiological and behavioral characteristics in children with ASD and provides support for the notion that these biomarkers may be useful for subgrouping children with ASD, especially with respect to targeted treatments.

15.
Biochimie ; 126: 31-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26924398

RESUMO

Folates are essential in the intermediary metabolism of amino acids, synthesis of nucleotides and for maintaining methylation reactions. They are also linked to the production of neurotransmitters through GTP needed for the synthesis of tetrahydrobiopterin. During pregnancy, folate is needed for fetal development. Folate deficiency during this period has been linked to increased risk of neural tube defects. Disturbances of folate metabolism due to genetic abnormalities or the presence of autoantibodies to folate receptor alpha (FRα) can impair physiologic processes dependent on folate, resulting in a variety of developmental disorders including cerebral folate deficiency syndrome and autism spectrum disorders. Overall, adequate folate status has proven to be important during pregnancy as well as neurological development and functioning in neonates and children. Treatment with pharmacologic doses of folinic acid has led to reversal of some symptoms in many children diagnosed with cerebral folate deficiency syndrome and autism, especially in those positive for autoantibodies to FRα. Thus, as the brain continues to develop throughout fetal and infant life, it can be affected and become dysfunctional due to a defective folate transport contributing to folate deficiency. Treatment and prevention of these disorders can be achieved by identification of those at risk and supplementation with folinic acid.


Assuntos
Transtorno Autístico , Deficiência de Ácido Fólico , Ácido Fólico , Defeitos do Tubo Neural , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Autoanticorpos/metabolismo , Transporte Biológico Ativo/genética , Feminino , Receptor 1 de Folato/antagonistas & inibidores , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/patologia , Humanos , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Gravidez
16.
PLoS One ; 11(3): e0152249, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27011008

RESUMO

The central nervous system continues to develop during gestation and after birth, and folate is an essential nutrient in this process. Folate deficiency and folate receptor alpha autoantibodies (FRα-AuAb) have been associated with pregnancy-related complications and neurodevelopmental disorders. In this pilot study, we investigated the effect of exposure to FRα antibodies (Ab) during gestation (GST), the pre-weaning (PRW), and the post weaning (POW) periods on learning and behavior in adulthood in a rat model. In the open field test and novel object recognition task, which examine locomotor activity and anxiety-like behavior, deficits in rats exposed to Ab during gestation and pre-weaning (GST+PRW) included more time spent in the periphery or corner areas, less time in the central area, frequent self-grooming akin to stereotypy, and longer time to explore a novel object compared to a control group; these are all indicative of increased levels of anxiety. In the place avoidance tasks that assess learning and spatial memory formation, only 30% of GST+PRW rats were able to learn the passive place avoidance task. None of these rats learned the active place avoidance task indicating severe learning deficits and cognitive impairment. Similar but less severe deficits were observed in rats exposed to Ab during GST alone or only during the PRW period, suggesting the extreme sensitivity of the fetal as well as the neonatal rat brain to the deleterious effects of exposure to Ab during this period. Behavioral deficits were not seen in rats exposed to antibody post weaning. These observations have implications in the pathology of FRα-AuAb associated with neural tube defect pregnancy, preterm birth and neurodevelopmental disorders including autism.


Assuntos
Autoanticorpos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Receptor 1 de Folato/imunologia , Ácido Fólico/metabolismo , Animais , Animais Recém-Nascidos , Autoanticorpos/imunologia , Comportamento Animal/fisiologia , Transtornos Cognitivos/fisiopatologia , Feminino , Receptor 1 de Folato/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Atividade Motora/efeitos dos fármacos , Defeitos do Tubo Neural/patologia , Projetos Piloto , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Desmame
17.
Birth Defects Res A Clin Mol Teratol ; 103(12): 1028-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26390016

RESUMO

BACKGROUND: Folate receptor autoantibodies in women have been associated with neural tube pregnancy and in children with cerebral folate deficiency syndrome and autism. These autoantibodies have been implicated in blocking folate transport to the fetus and to the brain in infants. METHODS: We report a woman with multiple pregnancy related complications who was diagnosed with autoantibodies to the folate receptor alpha. RESULTS: A treatment strategy with folate supplementation and reducing the antibody titer proved effective in normal pregnancy outcome. CONCLUSION: This long-term follow up of a subject with folate receptor autoantibodies is a first report of its kind and describes treatment strategy to prevent pregnancy related complications due to folate receptor autoantibodies.


Assuntos
Autoanticorpos/sangue , Receptor 1 de Folato/imunologia , Complicações na Gravidez/imunologia , Adulto , Feminino , Ácido Fólico/administração & dosagem , Humanos , Gravidez
18.
Nutrition ; 31(10): 1224-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238535

RESUMO

OBJECTIVE: Cellular uptake of folate is mediated by folate receptor (FR)α. Prior studies indicate that a FRα autoantibody (FRAb) is implicated in poor pregnancy outcomes. The aims of this study were to determine the prevalence of FRAbs in women with preterm and term pregnancies, and to investigate the role of maternal FRAbs in preterm birth. METHODS: This prospective observational study included 23 mothers and 25 preterm infants (two twin births) born at gestational age (GA) ≤32 wk and/or birth weight ≤1500 g (group 1) and 25 mother-term infant pairs (infants born at GA ≥37 wk, group 2). Blocking and binding FRAbs in maternal and in cord blood were determined. The association between maternal FRAbs and pregnancy outcome was measured using multiple logistic regression, adjusted for maternal age and previous preterm birth. RESULTS: The prevalence of FRAbs was 65.2% in women with preterm birth, which was twofold higher than in those with term pregnancy (28%; relative risk [RR], 2.3; 95% confidence interval [CI], 1.2-4.7). The prevalence of FRAbs in preterm infants (64%) was significantly higher than in term infants (24%; RR, 2.7; 95% CI, 1.3-5.7). Pregnant women with positive FRAbs had 4.9 times higher odds of having preterm birth (odds ratio, 4.9; 95% CI, 1.4-17.7), adjusted for maternal age and previous preterm birth. CONCLUSIONS: These findings suggest that the presence of FRAbs might be a contributing factor to preterm birth, which could be prevented with appropriate testing and therapeutic interventions. Further studies are warranted to investigate the possible mechanisms of fetal sensitization resulting in FRAb production in utero and its possible clinical correlates.


Assuntos
Autoanticorpos/sangue , Receptor 1 de Folato/sangue , Recém-Nascido Prematuro/sangue , Nascimento Prematuro/sangue , Peso ao Nascer , Feminino , Sangue Fetal/química , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Gravidez , Estudos Prospectivos
19.
Br J Nutr ; 112(8): 1323-32, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313575

RESUMO

Folate is essential for fetal development, and its deficiency during gestation causes behavioural deficits in the offspring. The present study investigated its influence during weaning on brain function in the pups of rats that were put on a folate-deficient (FD) diet on postnatal day (PND) 1. Systemic folate deficiency in pups on the FD diet (n 15) was evident from the dramatically lower hepatic folate concentrations (median 23·7, range 8·1-48·4 ng/mg protein) and higher homocysteine concentrations (median 27·7, range 14·7-45·5 pmol/mg protein), respectively, compared with those of pups on the normal diet (ND; n 9) (median 114·5, range 64·5-158·5 ng/mg protein and median 15·5, range 11·6-18·9 pmol/mg protein) on PND 23. Brain folate concentrations although low were similar in pups on the FD diet (median 10·5, range 5·5-24·5 ng/mg protein) and ND (median 11·1, range 7·1-24·2 ng/mg protein). There was a high accumulation of homocysteine in the brain of FD pups, mostly in the hippocampus (median 58·1, range 40·8-99·7 pmol/mg protein) and cerebellum (median 69·1, range 50·8-126·6 pmol/mg protein), indicating metabolic folate deficiency despite normal brain folate concentrations. Developmental deficits or autistic traits were more frequent in the FD group than in the ND group and repetitive self-grooming occurred, on average, three times (range 1-8) v. once (range 0-3) during 5 min, respectively. Long-term memory or spatial learning and set-shifting deficits affected 12 to 62% of rats in the FD group compared with none in the ND group. Post-weaning folic acid supplementation did not correct these deficits. These observations indicate that folate deficiency during weaning affects postnatal development even when gestational folate supply is normal.


Assuntos
Encéfalo/metabolismo , Dieta/efeitos adversos , Deficiência de Ácido Fólico/fisiopatologia , Ácido Fólico/metabolismo , Deficiências da Aprendizagem/etiologia , Transtornos da Memória/etiologia , Neurônios/metabolismo , Animais , Comportamento Animal , Encéfalo/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Suscetibilidade a Doenças , Feminino , Ácido Fólico/uso terapêutico , Deficiência de Ácido Fólico/dietoterapia , Deficiência de Ácido Fólico/etiologia , Deficiência de Ácido Fólico/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Homocisteína/metabolismo , Lactação , Deficiências da Aprendizagem/prevenção & controle , Fígado/metabolismo , Fígado/patologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Transtornos da Memória/prevenção & controle , Memória de Longo Prazo , Ratos Long-Evans , Aprendizagem Espacial , Desmame
20.
FASEB J ; 27(8): 2988-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23603833

RESUMO

The membrane receptor TCblR/CD320 binds transcobalamin (TC) saturated with vitamin B12 [cobalamin (Cbl)] and mediates cellular uptake of the vitamin. The specificity of TC for Cbl and of the receptor for TC-Cbl ensures efficient uptake of Cbl into cells. The high-affinity interaction of TCblR with TC-Cbl (Ka=10 nM(-1)) was investigated using deletions and mutations of amino acid sequences in TCblR. Only the extracellular region (aa 32-229) is needed for TC-Cbl binding, but the N-glycosylation sites (N126, N195, and N213) are of no importance for this function. Deleting the cysteine-rich region (aa 95-141) that separates the two low-density lipoprotein receptor type A (LDLR-A) domains does not affect TC-Cbl binding (Ka = 19-24 nM(-1)). The two LDLR-A domains (aa 54-89 and 132-167) with the negatively charged acidic residues involved in Ca(2+) binding are critical determinants of ligand binding. The cytoplasmic tail is apparently crucial for internalization of the ligand. Within this region, the RPLGLL motif and the PDZ binding motifs (QERL/KESL) appear to be involved in initiating and completing the process of ligand internalization. Mutations and deletions of these regions involved in binding and internalization of TC-Cbl are likely to produce the biochemical and clinical phenotype of Cbl deficiency.


Assuntos
Antígenos CD/genética , Antígenos CD/metabolismo , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , Endocitose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Ligantes , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Domínios PDZ/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Mapeamento de Interação de Proteínas/métodos , Receptores de Superfície Celular , Receptores de LDL/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...