Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38728616

RESUMO

Inverted singlet-triplet gap (INVEST) materials have promising photophysical properties for optoelectronic applications due to an inversion of their lowest singlet (S1) and triplet (T1) excited states. This results in an exothermic reverse intersystem crossing (rISC) process that potentially enhances triplet harvesting, compared to thermally activated delayed fluorescence (TADF) emitters with endothermic rISCs. However, the processes and phenomena that facilitate conversion between excited states for INVEST materials are underexplored. We investigate the complex potential energy surfaces (PESs) of the excited states of three heavily studied azaphenalene INVEST compounds, namely, cyclazine, pentazine, and heptazine using two state-of-the-art computational methodologies, namely, RMS-CASPT2 and SCS-ADC(2) methods. Our findings suggest that ISC and rISC processes take place directly between the S1 and T1 electronic states in all three compounds through a minimum-energy crossing point (MECP) with an activation energy barrier between 0.11 to 0.58 eV above the S1 state for ISC and between 0.06 and 0.36 eV above the T1 state for rISC. We predict that higher-lying triplet states are not populated, since the crossing point structures to these states are not energetically accessible. Furthermore, the conical intersection (CI) between the ground and S1 states is high in energy for all compounds (between 0.4 to 2.0 eV) which makes nonradiative decay back to the ground state a relatively slow process. We demonstrate that the spin-orbit coupling (SOC) driving the S1-T1 conversion is enhanced by vibronic coupling with higher-lying singlet and triplet states possessing vibrational modes of proper symmetry. We also rationalize that the experimentally observed anti-Kasha emission of cyclazine is due to the energetically inaccessible CI between the bright S2 and the dark S1 states, hindering internal conversion. Finally, we show that SCS-ADC(2) is able to qualitatively reproduce excited state features, but consistently overpredict relative energies of excited state structural minima compared to RMS-CASPT2. The identification of these excited state features elaborates design rules for new INVEST emitters with improved emission quantum yields.

2.
Science ; 384(6697): eadk9227, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753786

RESUMO

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

3.
Acc Chem Res ; 55(17): 2454-2466, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35948428

RESUMO

We must accelerate the pace at which we make technological advancements to address climate change and disease risks worldwide. This swifter pace of discovery requires faster research and development cycles enabled by better integration between hypothesis generation, design, experimentation, and data analysis. Typical research cycles take months to years. However, data-driven automated laboratories, or self-driving laboratories, can significantly accelerate molecular and materials discovery. Recently, substantial advancements have been made in the areas of machine learning and optimization algorithms that have allowed researchers to extract valuable knowledge from multidimensional data sets. Machine learning models can be trained on large data sets from the literature or databases, but their performance can often be hampered by a lack of negative results or metadata. In contrast, data generated by self-driving laboratories can be information-rich, containing precise details of the experimental conditions and metadata. Consequently, much larger amounts of high-quality data are gathered in self-driving laboratories. When placed in open repositories, this data can be used by the research community to reproduce experiments, for more in-depth analysis, or as the basis for further investigation. Accordingly, high-quality open data sets will increase the accessibility and reproducibility of science, which is sorely needed.In this Account, we describe our efforts to build a self-driving lab for the development of a new class of materials: organic semiconductor lasers (OSLs). Since they have only recently been demonstrated, little is known about the molecular and material design rules for thin-film, electrically-pumped OSL devices as compared to other technologies such as organic light-emitting diodes or organic photovoltaics. To realize high-performing OSL materials, we are developing a flexible system for automated synthesis via iterative Suzuki-Miyaura cross-coupling reactions. This automated synthesis platform is directly coupled to the analysis and purification capabilities. Subsequently, the molecules of interest can be transferred to an optical characterization setup. We are currently limited to optical measurements of the OSL molecules in solution. However, material properties are ultimately most important in the solid state (e.g., as a thin-film device). To that end and for a different scientific goal, we are developing a self-driving lab for inorganic thin-film materials focused on the oxygen evolution reaction.While the future of self-driving laboratories is very promising, numerous challenges still need to be overcome. These challenges can be split into cognition and motor function. Generally, the cognitive challenges are related to optimization with constraints or unexpected outcomes for which general algorithmic solutions have yet to be developed. A more practical challenge that could be resolved in the near future is that of software control and integration because few instrument manufacturers design their products with self-driving laboratories in mind. Challenges in motor function are largely related to handling heterogeneous systems, such as dispensing solids or performing extractions. As a result, it is critical to understand that adapting experimental procedures that were designed for human experimenters is not as simple as transferring those same actions to an automated system, and there may be more efficient ways to achieve the same goal in an automated fashion. Accordingly, for self-driving laboratories, we need to carefully rethink the translation of manual experimental protocols.


Assuntos
Algoritmos , Laboratórios , Humanos , Reprodutibilidade dos Testes
4.
Acc Chem Res ; 54(4): 849-860, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33528245

RESUMO

The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.

5.
J Org Chem ; 84(16): 10338-10348, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31283228

RESUMO

Halogen-bond (XB) catalyzed reactions could also be catalyzed by Brønsted acids, which may complicate the picture of the true activation pathway for these reactions. Herein, we report the first density functional theory study of the mechanistic pathways for the uncatalyzed, iodoimidazolinium halogen bond catalyzed, and a competitive Brønsted acid-catalyzed reduction of quinoline by Hantzsch ester. The uncatalyzed reaction was found to proceed via stepwise pathways. In the lowest energy pathway, proton transfer from Hantzsch ester, a weak Brønsted acid, to quinoline prior to hydride reduction was identified as the key to the lowered energy barriers compared to other reaction pathways. The same reaction steps are involved in the XB-catalyzed pathway, but with substantially lowered reaction barriers, particularly for the hydride-transfer steps. In contrast to the general belief that halogen bond catalysts bind to the electrophile quinoline and activate it by lowering its LUMO energy, we discovered that it is preferable to lower the LUMO energy of quinoline through protonation by Hantzsch ester as a Brønsted acid and stabilize the conjugate anion of Hantzsch ester via halogen bond. Finally, our calculations reveal that the iodoimidazolinium type of catalyst is prone to reduction by Hantzsch ester, generating a Brønsted acid as product. The Brønsted acid catalyzed pathway was calculated to be competitive with the halogen bond catalyzed pathway. Our theoretical findings highlight the need to be cautious when applying iodoimidazolinium catalysts in organocatalysis, and we hope it will aid the design of new halogen bond catalysts that could avoid undesirable Brønsted acid catalysis.

6.
J Comput Chem ; 40(20): 1829-1835, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30950537

RESUMO

Inspired by the recent interest of halogen bonding (XB) in the solid state, we detail a comprehensive benchmark study of planewave DFT geometry and interaction energy of lone-pair (LP) type and aromatic (AR) type halogen bonded complexes, using PAW and USPP pseudopotentials. For LP-type XB dimers, PBE-PAW generally agrees with PBE/aug-cc-pVQZ(-pp) geometries but significantly overbinds compared to CCSD(T)/aug-cc-pVQZ(-pp). Grimme's D3 dispersion corrections to PBE-PAW gives better agreement to the MP2/cc-pVTZ(-pp) results for AR-type dimers. For interaction energies, PBE-PAW may overbind or underbind for weaker XBs but clearly overbinds for stronger XBs. D3 dispersion corrections exacerbate the overbinding problem for LP-type complexes but significantly improves agreement for AR-type complexes compared to CCSD(T)/CBS. Finally, for periodic XB crystals, planewave PBE methods slightly underestimate the XB lengths by 0.03 to 0.05 Å. © 2019 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...