Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0294422, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946740

RESUMO

Bacteria respond to nutrient starvation implementing the stringent response, a stress signaling system resulting in metabolic remodeling leading to decreased growth rate and energy requirements. A well-characterized model of stringent response in Mycobacterium tuberculosis is the one induced by growth in low phosphate. The extracytoplasmic function (ECF) sigma factor SigE was previously suggested as having a key role in the activation of stringent response. In this study, we challenge this hypothesis by analyzing the temporal dynamics of the transcriptional response of a sigE mutant and its wild-type parental strain to low phosphate using RNA sequencing. We found that both strains responded to low phosphate with a typical stringent response trait, including the downregulation of genes encoding ribosomal proteins and RNA polymerase. We also observed transcriptional changes that support the occurring of an energetics imbalance, compensated by a reduced activity of the electron transport chain, decreased export of protons, and a remodeling of central metabolism. The most striking difference between the two strains was the induction in the sigE mutant of several stress-related genes, in particular, the genes encoding the ECF sigma factor SigH and the transcriptional regulator WhiB6. Since both proteins respond to redox unbalances, their induction suggests that the sigE mutant is not able to maintain redox homeostasis in response to the energetics imbalance induced by low phosphate. In conclusion, our data suggest that SigE is not directly involved in initiating stringent response but in protecting the cell from stress consequent to the low phosphate exposure and activation of stringent response. IMPORTANCE Mycobacterium tuberculosis can enter a dormant state enabling it to establish latent infections and to become tolerant to antibacterial drugs. Dormant bacteria's physiology and the mechanism(s) used by bacteria to enter dormancy during infection are still unknown due to the lack of reliable animal models. However, several in vitro models, mimicking conditions encountered during infection, can reproduce different aspects of dormancy (growth arrest, metabolic slowdown, drug tolerance). The stringent response, a stress response program enabling bacteria to cope with nutrient starvation, is one of them. In this study, we provide evidence suggesting that the sigma factor SigE is not directly involved in the activation of stringent response as previously hypothesized, but it is important to help the bacteria to handle the metabolic stress related to the adaptation to low phosphate and activation of stringent response, thus giving an important contribution to our understanding of the mechanism behind stringent response development.

2.
Front Microbiol ; 14: 1075143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960291

RESUMO

The Extracellular function (ECF) sigma factor SigE is one of the best characterized out of the 13 sigma factors encoded in the Mycobacterium tuberculosis chromosome. SigE is required for blocking phagosome maturation and full virulence in both mice and guinea pigs. Moreover, it is involved in the response to several environmental stresses as surface stress, oxidative stress, acidic pH, and phosphate starvation. Underscoring its importance in M. tuberculosis physiology, SigE is subjected to a very complex regulatory system: depending on the environmental conditions, its expression is regulated by three different sigma factors (SigA, SigE, and SigH) and a two-component system (MprAB). SigE is also regulated at the post-translational level by an anti-sigma factor (RseA) which is regulated by the intracellular redox potential and by proteolysis following phosphorylation from PknB upon surface stress. The set of genes under its direct control includes other regulators, as SigB, ClgR, and MprAB, and genes involved in surface remodeling and stabilization. Recently SigE has been shown to interact with PhoP to activate a subset of genes in conditions of acidic pH. The complex structure of its regulatory network has been suggested to result in a bistable switch leading to the development of heterogeneous bacterial populations. This hypothesis has been recently reinforced by the finding of its involvement in the development of persister cells able to survive to the killing activity of several drugs.

3.
Microbiology (Reading) ; 167(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34080971

RESUMO

Bacterial nutrition is a fundamental aspect of pathogenesis. While the host environment is in principle nutrient-rich, hosts have evolved strategies to interfere with nutrient acquisition by pathogens. In turn, pathogens have developed mechanisms to circumvent these restrictions. Changing the availability of bioavailable metal ions is a common strategy used by hosts to limit bacterial replication. Macrophages and neutrophils withhold iron, manganese, and zinc ions to starve bacteria. Alternatively, they can release manganese, zinc, and copper ions to intoxicate microorganisms. Metals are essential micronutrients and participate in catalysis, macromolecular structure, and signalling. This review summarises our current understanding of how central carbon metabolism in pathogens adapts to local fluctuations in free metal ion concentrations. We focus on the transcriptomics and proteomics data produced in studies of the iron-sparing response in Mycobacterium tuberculosis, the etiological agent of tuberculosis, and consequently generate a hypothetical model linking trehalose accumulation, succinate secretion and substrate-level phosphorylation in iron-starved M. tuberculosis. This review also aims to highlight a large gap in our knowledge of pathogen physiology: the interplay between metal homeostasis and central carbon metabolism, two cellular processes which are usually studied separately. Integrating metabolism and metal biology would allow the discovery of new weaknesses in bacterial physiology, leading to the development of novel and improved antibacterial therapies.


Assuntos
Carbono/metabolismo , Metais/metabolismo , Mycobacterium tuberculosis/metabolismo , Animais , Homeostase , Humanos , Ferro/metabolismo , Tuberculose/microbiologia
4.
J Bacteriol ; 203(4)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33288625

RESUMO

Characterizing the mycobacterial transporters involved in the uptake and/or catabolism of host-derived nutrients required by mycobacteria may identify novel drug targets against tuberculosis. Here, we identify and characterize a member of the amino acid-polyamine-organocation superfamily, a potential γ-aminobutyric acid (GABA) transport protein, GabP, from Mycobacterium smegmatis The protein was expressed to a level allowing its purification to homogeneity, and size exclusion chromatography coupled with multiangle laser light scattering (SEC-MALLS) analysis of the purified protein showed that it was dimeric. We showed that GabP transported γ-aminobutyric acid both in vitro and when overexpressed in E. coli Additionally, transport was greatly reduced in the presence of ß-alanine, suggesting it could be either a substrate or inhibitor of GabP. Using GabP reconstituted into proteoliposomes, we demonstrated that γ-aminobutyric acid uptake is driven by the sodium gradient and is stimulated by membrane potential. Molecular docking showed that γ-aminobutyric acid binds MsGabP, another Mycobacterium smegmatis putative GabP, and the Mycobacterium tuberculosis homologue in the same manner. This study represents the first expression, purification, and characterization of an active γ-aminobutyric acid transport protein from mycobacteria.IMPORTANCE The spread of multidrug-resistant tuberculosis increases its global health impact in humans. As there is transmission both to and from animals, the spread of the disease also increases its effects in a broad range of animal species. Identifying new mycobacterial transporters will enhance our understanding of mycobacterial physiology and, furthermore, provides new drug targets. Our target protein is the gene product of msmeg_6196, annotated as GABA permease, from Mycobacterium smegmatis strain MC2 155. Our current study demonstrates it is a sodium-dependent GABA transporter that may also transport ß-alanine. As GABA may well be an essential nutrient for mycobacterial metabolism inside the host, this could be an attractive target for the development of new drugs against tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mycobacterium smegmatis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Sódio/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Regulação Bacteriana da Expressão Gênica , Metabolômica , Simulação de Acoplamento Molecular , Transportadores de Ânions Orgânicos/genética , Filogenia , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/genética
5.
Mol Microbiol ; 112(4): 1284-1307, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31389636

RESUMO

Bacterial nutrition is an essential aspect of host-pathogen interaction. For the intracellular pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans, fatty acids derived from lipid droplets are considered the major carbon source. However, many other soluble nutrients are available inside host cells and may be used as alternative carbon sources. Lactate and pyruvate are abundant in human cells and fluids, particularly during inflammation. In this work, we study Mtb metabolism of lactate and pyruvate combining classic microbial physiology with a 'multi-omics' approach consisting of transposon-directed insertion site sequencing (TraDIS), RNA-seq transcriptomics, proteomics and stable isotopic labelling coupled with mass spectrometry-based metabolomics. We discovered that Mtb is well adapted to use both lactate and pyruvate and that their metabolism requires gluconeogenesis, valine metabolism, the Krebs cycle, the GABA shunt, the glyoxylate shunt and the methylcitrate cycle. The last two pathways are traditionally associated with fatty acid metabolism and, unexpectedly, we found that in Mtb the methylcitrate cycle operates in reverse, to allow optimal metabolism of lactate and pyruvate. Our findings reveal a novel function for the methylcitrate cycle as a direct route for the biosynthesis of propionyl-CoA, the essential precursor for the biosynthesis of the odd-chain fatty acids.


Assuntos
Ácido Láctico/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Pirúvico/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Citrato (si)-Sintase/metabolismo , Citratos/metabolismo , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Glioxilatos , Tuberculose/microbiologia
6.
Nat Microbiol ; 4(10): 1716-1726, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31285586

RESUMO

The peptidoglycan cell wall is an essential structure for the growth of most bacteria. However, many are capable of switching into a wall-deficient L-form state in which they are resistant to antibiotics that target cell wall synthesis under osmoprotective conditions, including host environments. L-form cells may have an important role in chronic or recurrent infections. The cellular pathways involved in switching to and from the L-form state remain poorly understood. This work shows that the lack of a cell wall, or blocking its synthesis with ß-lactam antibiotics, results in an increased flux through glycolysis. This leads to the production of reactive oxygen species from the respiratory chain, which prevents L-form growth. Compensating for the metabolic imbalance by slowing down glycolysis, activating gluconeogenesis or depleting oxygen enables L-form growth in Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus. These effects do not occur in Enterococcus faecium, which lacks the respiratory chain pathway. Our results collectively show that when cell wall synthesis is blocked under aerobic and glycolytic conditions, perturbation of cellular metabolism causes cell death. We provide a mechanistic framework for many anecdotal descriptions of the optimal conditions for L-form growth and non-lytic killing by ß-lactam antibiotics.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Carbono/metabolismo , Formas L/efeitos dos fármacos , Formas L/metabolismo , beta-Lactamas/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Transporte de Elétrons/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/crescimento & desenvolvimento , Enterococcus faecium/metabolismo , Gluconeogênese , Formas L/genética , Formas L/crescimento & desenvolvimento , Muramidase/farmacologia , Mutação , Penicilina G/farmacologia , Peptidoglicano/efeitos dos fármacos , Peptidoglicano/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade
7.
Sci Rep ; 9(1): 5783, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962489

RESUMO

Tightly regulated gene expression systems are powerful tools to study essential genes and characterize potential drug targets. In a past work we reported the construction of a very stringent and versatile repressible promoter system for Mycobacterium tuberculosis based on two different repressors (TetR/Pip-OFF system). This system, causing the repression of the target gene in response to anhydrotetracycline (ATc), has been successfully used in several laboratories to characterize essential genes in different mycobacterial species both in vitro and in vivo. One of the limits of this system was its instability, leading to the selection of mutants in which the expression of the target gene was no longer repressible. In this paper we demonstrated that the instability was mainly due either to the loss of the integrative plasmid carrying the genes encoding the two repressors, or to the selection of a frameshift mutation in the gene encoding the repressors Pip. To solve these problems, we (i) constructed a new integrative vector in which the gene encoding the integrase was deleted to increase its stability, and (ii) developed a new integrative vector carrying the gene encoding Pip to introduce a second copy of this gene in the chromosome. The use of these new tools was shown to reduce drastically the selection of escape mutants.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular/métodos , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/genética , Integrases/genética , Integrases/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Proteínas Repressoras/genética , Tetraciclinas/farmacologia
8.
Elife ; 82019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30702426

RESUMO

Bacterial metabolism is fundamental to survival and pathogenesis. We explore how Mycobacterium tuberculosis utilises amino acids as nitrogen sources, using a combination of bacterial physiology and stable isotope tracing coupled to mass spectrometry metabolomics methods. Our results define core properties of the nitrogen metabolic network from M. tuberculosis, such as: (i) the lack of homeostatic control of certain amino acid pool sizes; (ii) similar rates of utilisation of different amino acids as sole nitrogen sources; (iii) improved nitrogen utilisation from amino acids compared to ammonium; and (iv) co-metabolism of nitrogen sources. Finally, we discover that alanine dehydrogenase is involved in ammonium assimilation in M. tuberculosis, in addition to its essential role in alanine utilisation as a nitrogen source. This study represents the first in-depth analysis of nitrogen source utilisation by M. tuberculosis and reveals a flexible metabolic network with characteristics that are likely a product of evolution in the human host.


Assuntos
Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Nitrogênio/metabolismo , Alanina Desidrogenase/metabolismo , Aminoácidos/metabolismo , Compostos de Amônio/farmacologia , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nitrogênio/farmacologia
9.
Microb Biotechnol ; 11(1): 238-247, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29076636

RESUMO

A range of regulated gene expression systems has been developed for mycobacteria in the last few years to facilitate the study of essential genes, validate novel drug targets and evaluate their vulnerability. Among these, the TetR/Pip-OFF repressible promoter system was successfully used in several mycobacterial species both in vitro and in vivo. In the first version of the system, the repressible promoter was Pptr , a strong Pip-repressible promoter of Streptomyces pristinaespiralis, which might hamper effective downregulation of genes with a low basal expression level. Here, we report an enhanced system that allows more effective control of genes expressed at low level. To this end, we subjected Pptr to targeted mutagenesis and produced 16 different promoters with different strength. Three of them, weaker than the wild-type promoter, were selected and characterized showing that they can indeed improve the performances of TetR/Pip-OFF repressible system both in vitro and in vivo increasing its stringency. Finally, we used these promoters to construct a series of bacterial biosensors with different sensitivity to DprE1 inhibitors and developed a whole-cell screening assay to identify inhibitors of this enzyme.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Genética Microbiana/métodos , Biologia Molecular/métodos , Mutagênese , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas , Oxirredutases do Álcool/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Técnicas Biossensoriais , Inibidores Enzimáticos/análise
10.
Cell Tissue Bank ; 17(4): 619-628, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27604467

RESUMO

Contamination of retrieved tissues is a major problem for allograft safety. Consequently, tissue banks have implemented decontamination protocols to eliminate microorganisms from tissues. Despite the widespread adoption of these protocols, few comprehensive studies validating such methods have been published. In this manuscript we compare the bactericidal activity of different antibiotic cocktails at different temperatures against a panel of bacterial species frequently isolated in allograft tissues collected at the Treviso Tissue Bank Foundation, a reference organization of the Veneto Region in Italy that was instituted to select, recover, process, store and distribute human tissues. We were able to identify at least two different formulations capable of killing most of the bacteria during prolonged incubation at 4 °C.


Assuntos
Aloenxertos/microbiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Descontaminação/métodos , Esterilização/métodos , Bactérias/isolamento & purificação , Combinação de Medicamentos , Humanos , Itália , Bancos de Tecidos , Transplante Homólogo
11.
J Bacteriol ; 196(19): 3441-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25049093

RESUMO

The cell envelope of Mycobacterium tuberculosis contains glycans and lipids of peculiar structure that play prominent roles in the biology and pathogenesis of tuberculosis. Consequently, the chemical structure and biosynthesis of the cell wall have been intensively investigated in order to identify novel drug targets. Here, we validate that the function of phosphatidyl-myo-inositol mannosyltransferase PimA is vital for M. tuberculosis in vitro and in vivo. PimA initiates the biosynthesis of phosphatidyl-myo-inositol mannosides by transferring a mannosyl residue from GDP-Man to phosphatidyl-myo-inositol on the cytoplasmic side of the plasma membrane. To prove the essential nature of pimA in M. tuberculosis, we constructed a pimA conditional mutant by using the TetR-Pip off system and showed that downregulation of PimA expression causes bactericidality in batch cultures. Consistent with the biochemical reaction catalyzed by PimA, this phenotype was associated with markedly reduced levels of phosphatidyl-myo-inositol dimannosides, essential structural components of the mycobacterial cell envelope. In addition, the requirement of PimA for viability was clearly demonstrated during macrophage infection and in two different mouse models of infection, where a dramatic decrease in viable counts was observed upon silencing of the gene. Notably, depletion of PimA resulted in complete clearance of the mouse lungs during both the acute and chronic phases of infection. Altogether, the experimental data highlight the importance of the phosphatidyl-myo-inositol mannoside biosynthetic pathway for M. tuberculosis and confirm that PimA is a novel target for future drug discovery programs.


Assuntos
Proteínas de Bactérias/metabolismo , Manosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Manosiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Fosfatidilinositóis/biossíntese
12.
Mol Microbiol ; 92(1): 194-211, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517327

RESUMO

In Mycobacterium tuberculosis the decaprenyl-phospho-d-arabinofuranose (DPA) pathway is a validated target for the drugs ethambutol and benzothiazinones. To identify other potential drug targets in the pathway, we generated conditional knock-down mutants of each gene involved using the TET-PIP OFF system. dprE1, dprE2, ubiA, prsA, rv2361c, tkt and rpiB were confirmed to be essential under non-permissive conditions, whereas rv3807c was not required for survival. In the most vulnerable group, DprE1-depleted cells died faster in vitro and intracellularly than those lacking UbiA and PrsA. Downregulation of DprE1 and UbiA resulted in similar phenotypes, namely swelling of the bacteria, cell wall damage and lysis as observed at the single cell level, by real time microscopy and electron microscopy. By contrast, depletion of PrsA led to cell elongation and implosion, which was suggestive of a more pleiotropic effect. Drug sensitivity assays with known DPA-inhibitors supported the use of conditional knock-down strains for target-based whole-cell screens. Together, our work provides strong evidence for the vulnerability of all but one of the enzymes in the DPA pathway and generates valuable tools for the identification of lead compounds targeting the different biosynthetic steps. PrsA, phosphoribosyl-pyrophosphate synthetase, appears to be a particularly attractive new target for drug discovery.


Assuntos
Arabinose/análogos & derivados , Genes Bacterianos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Transdução de Sinais , Antibacterianos/farmacologia , Arabinose/antagonistas & inibidores , Arabinose/biossíntese , Proteínas de Bactérias , Linhagem Celular Tumoral , Parede Celular/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes Bacterianos/efeitos dos fármacos , Genes Essenciais/efeitos dos fármacos , Humanos , Lipoproteínas , Macrófagos/microbiologia , Proteínas de Membrana , Microscopia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura , Transdução de Sinais/efeitos dos fármacos
13.
Curr Pharm Des ; 20(27): 4346-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24245757

RESUMO

The emergence of multi- and extensively-drug resistant strains of Mycobacterium tuberculosis makes the development of novel anti-tubercular compounds and the identification of alternative mycobacterial drugable targets urgent priorities. Recently, type VII secretion systems (T7SS) have been discovered in mycobacteria. The genome of M. tuberculosis encodes 5 of such systems (ESX-1 to -5), three of which have been characterized and shown to be essential for viability (ESX-3, ESX-5) or virulence (ESX-1, ESX-5). Because of their crucial role in host-pathogen interactions as well as their involvement in basic biological processes of tubercle bacilli, T7SS/ESX represent promising targets for novel anti-tuberculosis drugs. Here, we review the current knowledge of the T7SS/ESX and their impact on M. tuberculosis physiology and virulence. Finally, we discuss the possible approaches to develop T7SS/ESX inhibitors.


Assuntos
Antituberculosos , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Descoberta de Drogas/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sequência de Bases , Sítios de Ligação , Parede Celular/metabolismo , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Alinhamento de Sequência , Virulência
14.
PLoS One ; 8(10): e78351, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155985

RESUMO

ESX-3 is one of the five type VII secretion systems encoded by the Mycobacterium tuberculosis genome. We recently showed the essentiality of ESX-3 for M. tuberculosis viability and proposed its involvement in iron and zinc metabolism. In this study we confirmed the role of ESX-3 in iron uptake and its involvement in the adaptation to low zinc environment in M. tuberculosis. Moreover, we unveiled functional differences between the ESX-3 roles in M. tuberculosis and M. smegmatis showing that in the latter ESX-3 is only involved in the adaptation to iron and not to zinc restriction. Finally, we also showed that in M. tuberculosis this secretion system is essential for iron and zinc homeostasis not only in conditions in which the concentrations of these metals are limiting but also in metal sufficient conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Homeostase , Ferro/metabolismo , Mycobacterium tuberculosis/metabolismo , Zinco/metabolismo , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Linhagem Celular , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Hemina/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Mutação/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oxazóis/metabolismo , Permeabilidade/efeitos dos fármacos , Estreptonigrina/farmacologia , Transcrição Gênica/efeitos dos fármacos
15.
Appl Environ Microbiol ; 76(15): 5312-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20543044

RESUMO

Genetic manipulation of mycobacteria still represents a serious challenge due to the lack of tools and selection markers. In this report, we describe the development of an intrinsically unstable excisable cassette for introduction of unmarked mutations in both Mycobacterium smegmatis and Mycobacterium tuberculosis.


Assuntos
Genética Microbiana/métodos , Mutagênese Insercional/métodos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Recombinação Genética , Deleção de Sequência
16.
J Bacteriol ; 191(20): 6340-4, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19684129

RESUMO

Recently, a novel type of secretory pathway, type VII secretion systems (T7SSs), has been characterized in mycobacteria. The chromosomes of Mycobacterium tuberculosis and Mycobacterium bovis encode five T7SSs (ESX-1 to ESX-5). The best characterized of them, ESX-1, is involved in host-pathogen interactions, and its deletion is one of the main causes of M. bovis BCG attenuation. Another T7SS, ESX-3, has been previously shown to be transcriptionally controlled by the zinc uptake repressor (Zur) and by the iron-dependent transcriptional repressor (IdeR), suggesting that it might be involved in zinc and iron homeostasis. In this study, we characterized an M. tuberculosis conditional mutant in which transcription of the ESX-3 gene cluster can be downregulated by anhydrotetracycline. We showed that this T7SS is essential for growth and that this phenotype can be complemented by zinc, iron, or supernatant from a wild-type parental strain culture, demonstrating that the ESX-3 secretion system is responsible for the secretion of some soluble factor(s) required for growth that is probably involved in optimal iron and zinc uptake.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Mycobacterium tuberculosis/genética , Zinco/metabolismo , Proteínas de Bactérias/genética , Meios de Cultivo Condicionados , Ferro/farmacologia , Mutação , Fatores de Tempo , Zinco/farmacologia
17.
Int J Radiat Biol ; 84(11): 867-77, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19016135

RESUMO

PURPOSE: Long-term space exploration requires biological life support systems capable of coping with the deleterious space environment. The use of oxygenic photosynthetic microorganisms represents an intriguing topic in this context, mainly from the point of view of food and O2 production. The aim of the present study was to assess the effects of space ionizing radiation exposure on the photosynthetic activity of various microorganisms. MATERIALS AND METHODS: Ground-based irradiation experiments were performed using fast neutrons and gamma rays on microorganisms maintained at various light conditions. A stratospheric balloon and a European Space Agency (ESA) flight facility were used to deliver organisms to space at the altitude of 38 and 300 km, respectively. During the balloon flight, the fluorescence activity of the organisms was real-time monitored by means of a special biosensor. RESULTS: The quantum yield of Photosystem II (PSII), measured directly in flight, varied among the microorganisms depending on the light conditions. Darkness and irradiation of cells at 120 and 180 micromol m(-2) s(-1) enhanced the radiation-induced inhibition of photosynthetic activity, while exposure to weaker light irradiance of 20 and 70 micromol m(-2) s(-1) protected the cells against damage. Cell permanence in space reduced the photosynthetic growth while the oxygen evolution capacity of the cells after the flight was enhanced. CONCLUSIONS: A potential role of PSII in capturing and utilizing ionizing radiation energy is postulated.


Assuntos
Eucariotos/metabolismo , Eucariotos/efeitos da radiação , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Eucariotos/citologia , Raios gama , Nêutrons , Voo Espacial
18.
FEMS Yeast Res ; 6(3): 421-7, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16630282

RESUMO

KlADH3 and KlADH4 are Kluyveromyces lactis genes encoding the two mitochondrial alcohol dehydrogenase activities located within mitochondria. In this yeast, ethanol induces the transcription of KlADH4 and, conversely, represses that of KlADH3. In this study, we describe the effects of the aar900 mutation on such regulation. This mutation, firstly isolated in a strain devoid of alcohol dehydrogenase genes except KlADH4, conferred to cells resistance to allyl alcohol because of the absence of the KlAdh4p activity. When the mutation was transferred by crosses to an isogenic strain containing all the alcohol dehydrogenase genes, we found that the KlADH3 gene was highly expressed even in the presence of ethanol. In addition, we observed that the absence of KlAdh4p resulted from a post-transcriptional control in that KlADH4 was transcriptionally induced by ethanol. We also found that KlPDC1, another ethanol-repressible gene, was not transcribed in the mutant in the presence of this carbon source, indicating that the escape of KlADH3 from ethanol repression was a peculiar feature of this gene. Genetic analysis showed a Mendelian segregation of the mutation that was mapped in a region of chromosome III close to the ade1 locus. Interestingly, the aar900 mutants had a pleiotropic phenotype and showed increased resistance to monovalent cations and benomyl, suggesting that the mutation could also affect genes other than the alcohol dehydrogenase ones. Strains carrying the aar900 mutation could represent useful tools to unravel the peculiar regulation of KlADH3 and KlADH4 by ethanol.


Assuntos
Álcool Desidrogenase/genética , Regulação Fúngica da Expressão Gênica , Kluyveromyces/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Mutação , Álcool Desidrogenase/metabolismo , Antifúngicos/farmacologia , Benomilo/farmacologia , Cátions Monovalentes/farmacologia , Mapeamento Cromossômico , Etanol/metabolismo , Kluyveromyces/enzimologia , Kluyveromyces/crescimento & desenvolvimento , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Transcrição Gênica
19.
Genetics ; 170(3): 1023-32, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15879504

RESUMO

We have isolated the KlNOT4 gene of the yeast Kluyveromyces lactis, which encodes a component of the evolutionarily conserved CCR4-NOT complex. We show that inactivation of the gene leads to pleiotropic defects that were differentially suppressed by the NOT4 gene of S. cerevisiae, indicating that these genes have overlapping, but not identical, functions. K. lactis strains lacking Not4p are defective in fermentation and show reduced transcription of glucose transporter and glycolytic genes, which are phenotypes that are not found in the corresponding mutant of S. cerevisiae. We also show that Not4 proteins control the respiratory pathway in both yeasts, although with some differences. They activate transcription of KlACS2 and KlCYC1, but repress KlICL1, ScICL1, ScACS1, and ScCYC1. Altogether, our results indicate that Not4p is a pivotal factor involved in the regulation of carbon metabolism in yeast.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Inativação Gênica , Genes Fúngicos/genética , Kluyveromyces/genética , Fenótipo , Transcrição Gênica/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Carbono/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Proteínas Repressoras , Ribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Ubiquitina-Proteína Ligases/genética
20.
Mol Biol Cell ; 14(2): 721-9, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12589065

RESUMO

The LSM4 gene of Saccharomyces cerevisiae codes for an essential protein involved in pre-mRNA splicing and also in mRNA decapping, a crucial step for mRNA degradation. We previously demonstrated that the first 72 amino acids of the Kluyveromyces lactis Lsm4p (KlLsm4p), which contain the Sm-like domains, can restore cell viability in both K. lactis and S. cerevisiae cells not expressing the endogenous protein. However, the absence of the carboxy-terminal region resulted in a remarkable loss of viability in stationary phase cells (). Herein, we demonstrate that S. cerevisiae cells expressing the truncated LSM4 protein of K. lactis showed the phenotypic markers of yeast apoptosis such as chromatin condensation, DNA fragmentation, and accumulation of reactive oxygen species. The study of deletion mutants revealed that apoptotic markers were clearly evident also in strains lacking genes involved in mRNA decapping, such as LSM1, DCP1, and DCP2, whereas a slight effect was observed in strains lacking the genes DHH1 and PAT1. This is the first time that a connection between mRNA stability and apoptosis is reported in yeast, pointing to mRNA decapping as the crucial step responsible of the observed apoptotic phenotypes.


Assuntos
Proteínas de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Alelos , Apoptose , Cromatina/metabolismo , RNA Helicases DEAD-box , Fragmentação do DNA , Proteínas de Ligação a DNA/genética , Deleção de Genes , Genótipo , Marcação In Situ das Extremidades Cortadas , Kluyveromyces/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Fenótipo , Testes de Precipitina , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Helicases/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...