Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(1): 82-99, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815042

RESUMO

Opioids are the most effective painkillers, but their benefit-risk balance often hinder their therapeutic use. WLB-73502 is a dual, bispecific compound that binds sigma-1 (S1R) and mu-opioid (MOR) receptors. WLB-73502 is an antagonist at the S1R. It behaved as a partial MOR agonist at the G-protein pathway and produced no/unsignificant ß-arrestin-2 recruitment, thus demonstrating low intrinsic efficacy on MOR at both signalling pathways. Despite its partial MOR agonism, WLB-73502 exerted full antinociceptive efficacy, with potency superior to morphine and similar to oxycodone against nociceptive, inflammatory and osteoarthritis pain, and superior to both morphine and oxycodone against neuropathic pain. WLB-73502 crosses the blood-brain barrier and binds brain S1R and MOR to an extent consistent with its antinociceptive effect. Contrary to morphine and oxycodone, tolerance to its antinociceptive effect did not develop after repeated 4-week administration. Also, contrary to opioid comparators, WLB-73502 did not inhibit gastrointestinal transit or respiratory function in rats at doses inducing full efficacy, and it was devoid of proemetic effect (retching and vomiting) in ferrets at potentially effective doses. WLB-73502 benefits from its bivalent S1R antagonist and partial MOR agonist nature to provide an improved antinociceptive and safety profile respect to strong opioid therapy.

2.
Drug Metab Lett ; 14(3): 206-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34886785

RESUMO

BACKGROUND: Enflicoxib is a non-steroidal anti-inflammatory drug of the coxib family characterized by a long-lasting pharmacological activity that has been attributed to its active metabolite E-6132. OBJECTIVES: The aim of this work was to explore enflicoxib biotransformation In vitro in humans, rats and dogs, and to determine its metabolic pathways. METHODS: Different In vitro test systems were used, including hepatocytes and liver and non-hepatic microsomes. The samples were incubated with enflicoxib and/or any of its metabolites at 37°C for different times depending on the test system. The analyses were performed by liquid chromatography coupled with either radioactivity detection or high-resolution mass spectrometry. RESULTS: Enflicoxib was efficiently metabolized by cytochrome P-450 into three main phase I metabolites: M8, E-6132, and M7. The non-active hydroxy-pyrazoline metabolite M8 accounted for most of the fraction metabolized in all the three species. The active pyrazol metabolite E-6132 showed a slow formation rate, especially in dogs, whereas metabolite M7 was a secondary metabolite formed by oxidation of M8. In hepatocytes, diverse phase II metabolite conjugates were formed, including enflicoxib glucuronide, M8 glucuronide, E-6132 glucuronide, M7 glucuronide, and M7 sulfate. Metabolite E-6132 was most probably eliminated by a unique glucuronidation reaction at a very low rate. CONCLUSION: The phase I metabolism of enflicoxib was qualitatively very similar among rats, humans and dogs. The low formation and glucuronidation rates of the active enflicoxib metabolite E-6132 in dogs are postulated as key factors underlying the mechanism of its long-lasting pharmacokinetics and enflicoxib's overall sustained efficacy.


Assuntos
Glucuronídeos , Microssomos Hepáticos , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cães , Glucuronídeos/metabolismo , Humanos , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Pirazóis , Ratos , Sulfonamidas
3.
Xenobiotica ; 51(5): 501-512, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33622176

RESUMO

The potential for drug-drug interactions (DDI) of EST73502 was preliminary explored in vitro. EST73502 is a new chemical entity intended for oral pain treatment with dual sigma-1 receptor (σ1R) antagonism and µ-opioid receptor (MOR) partial agonism, that presents a promising potent analgesic activity.Several enzymes were involved in EST73502 metabolism catalysing the formation of different metabolites, CYP3A4 and CYP2D6 being the main ones.Fraction unbound was determined due to its impact in interactions, a considerable proportion of EST73502 being available.EST73502 showed a low potential for CYP inhibition, except for CYP2D6 that showed time-dependent inhibition.No induction potential was found for CYP1A2 and 3A4, while CYP2B6 was induced at high concentration.EST73502 seemed to be a potential efflux transporter substrate (efflux ratio ≥ 2) but a negligible in vivo impact would be expected due to its high solubility and permeability in Caco-2 cells. P-gp inhibition was observed while no BCRP inhibition was detected.Preliminary in vitro interaction studies suggested that neither CYPs nor efflux transporters interactions would preclude further development of EST73502 to thoroughly assess the clinical relevance of these findings.


Assuntos
Preparações Farmacêuticas , Receptores sigma , Células CACO-2 , Interações Medicamentosas , Humanos , Receptores Opioides mu/agonistas , Receptor Sigma-1
4.
Xenobiotica ; 51(4): 373-386, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33350877

RESUMO

EST64401 and EST64514 are two selective sigma-1 receptor ligands that showed a good profile in a lead optimization process for oral pain treatment. Their potential for pharmacokinetic-based drug-drug interactions was assessed to anticipate clinical interactions.Both compounds showed a low potential for CYP inhibition with percentages of inhibition <50% at 1 µM in recombinant human CYPs (CYP1A2, 2C9, 2C19, 2D6 and 3A4) and IC50 ≥75 µM for CYP3A4 and 2D6 in human liver microsomes.No CYP induction was observed for CYP1A2, 2B6 and 3A4 at concentrations ≤25 µM (EST64401) or ≤50 µM (EST64514) in human hepatocytes using as endpoints CYP activities and mRNA levels.More than one enzyme participated in compound metabolism. The main enzymes involved were CYP3A4 for EST64401 and CYP2D6 besides CYP3A4 for EST64514.Neither EST64401 nor EST64514 seemed to be substrates of P-gp or BCRP in Caco-2 cells (efflux ratio ≤2). Transporter inhibition was observed at concentrations ≥20 µM; EST64401 only inhibiting P-gp at higher concentrations (≥125 µM).Preliminary in vitro interaction studies suggest a similar profile for EST64401 and EST64514. Therefore, other properties will have to be considered for compound differentiation and selection for further development.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Preparações Farmacêuticas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Células CACO-2 , Interações Medicamentosas , Humanos , Microssomos Hepáticos , Proteínas de Neoplasias , Receptores sigma , Receptor Sigma-1
5.
Biol Pharm Bull ; 43(1): 68-76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31902934

RESUMO

EST64454 is a selective sigma-1 receptor ligand intended for orally administered pain treatment that showed a promising profile in the lead optimization process. As part of the preliminary compound profiling, the potential for future drug-drug interactions was explored in vitro. Both direct and time-dependent CYP inhibition for CYP1A2, 2C9, 2C19, 2D6 and 3A4 was studied in human liver microsomes. EST64454 showed a low potential for CYP inhibition (IC50 between 100 and 1000 µM) and as time-dependent inhibitor (IC50 shift mainly around 1). CYP induction studies with HepaRG™ cells revealed no CYP induction at concentrations ≤50 µM, as shown by the CYP1A2, 3A4 and 2B6 activities measured. Reaction phenotyping was assessed after incubation with recombinant human enzymes. Although a very low metabolism was observed, several enzymes catalyzed the formation of metabolites, including CYP3A4, 2C19 and flavin monooxygenases (FMO) 1 and 3. EST64454 was not a P-glycoprotein (P-gp) substrate and was highly permeable in Caco-2 cells. P-gp inhibition was only observed at 200 µM, the highest concentration studied. Preliminary studies suggest that neither CYP nor P-gp interaction of EST64454 would be of any concern for further development. At later stages, the interaction kinetics and the clinical relevance of these findings will be thoroughly evaluated.


Assuntos
Analgésicos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Receptores sigma/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Analgésicos/farmacocinética , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Feminino , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Receptor Sigma-1
6.
J Med Chem ; 63(5): 2434-2454, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31743642

RESUMO

The synthesis and pharmacological activity of a new series of 1-oxa-4,9-diazaspiro[5.5]undecane derivatives as potent dual ligands for the sigma-1 receptor (σ1R) and the µ-opioid receptor (MOR) are reported. The different positions of the central scaffold, designed using a merging strategy of both target pharmacophores, were explored using a versatile synthetic approach. Phenethyl derivatives in position 9, substituted pyridyl moieties in position 4 and small alkyl groups in position 2 provided the best profiles. One of the best compounds, 15au, showed a balanced dual profile (i.e., MOR agonism and sigma antagonism) and a potent analgesic activity, comparable to the MOR agonist oxycodone in the paw pressure test in mice. Contrary to oxycodone, as expected from the addition of σ1R antagonism, 15au showed local, peripheral activity in this test, which was reversed by the σ1R agonist PRE-084. At equianalgesic doses, 15au showed less constipation than oxycodone, providing evidence that dual MOR agonism and σ1R antagonism may be a useful strategy for obtaining potent and safer analgesics.


Assuntos
Alcanos/uso terapêutico , Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Receptores Opioides mu/agonistas , Receptores sigma/antagonistas & inibidores , Alcanos/química , Alcanos/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Modelos Moleculares , Dor/metabolismo , Manejo da Dor , Receptores sigma/metabolismo , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Receptor Sigma-1
7.
J Med Chem ; 55(19): 8211-24, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22784008

RESUMO

The synthesis and pharmacological activity of a new series of 1-arylpyrazoles as potent σ(1) receptor (σ(1)R) antagonists are reported. The new compounds were evaluated in vitro in human σ(1)R and guinea pig σ(2) receptor (σ(2)R) binding assays. The nature of the pyrazole substituents was crucial for activity, and a basic amine was shown to be necessary, in accordance with known receptor pharmacophores. A wide variety of amines and spacer lengths between the amino and pyrazole groups were tolerated, but only the ethylenoxy spacer and small cyclic amines provided compounds with sufficient selectivity for σ(1)R vs σ(2)R. The most selective compounds were further profiled, and compound 28, 4-{2-[5-methyl-1-(naphthalen-2-yl)-1H-pyrazol-3-yloxy]ethyl}morpholine (S1RA, E-52862), which showed high activity in the mouse capsaicin model of neurogenic pain, emerged as the most interesting candidate. In addition, compound 28 exerted dose-dependent antinociceptive effects in several neuropathic pain models. This, together with its good physicochemical, safety, and ADME properties, led compound 28 to be selected as clinical candidate.


Assuntos
Morfolinas/síntese química , Pirazóis/síntese química , Receptores sigma/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Feminino , Cobaias , Células HEK293 , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Técnicas In Vitro , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Morfolinas/química , Morfolinas/farmacologia , Atividade Motora/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Técnicas de Patch-Clamp , Pirazóis/química , Pirazóis/farmacologia , Ensaio Radioligante , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/fisiopatologia , Relação Estrutura-Atividade , Receptor Sigma-1
8.
ChemMedChem ; 1(1): 140-54, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16892345

RESUMO

Based on a medicinal-chemistry-guided approach, three novel series of druglike cycloalkyl-annelated pyrazoles were synthesized and display high affinity (pKi>8) for the sigma1 receptor. Structure-affinity relationships were established, and the different scaffolds were optimized with respect to sigma1 binding and selectivity versus the sigma2 receptor and the hERG channel, resulting in selective compounds that have Ki values (for sigma1) in the subnanomolar range. Selected compounds were screened for cytochrome P450 inhibition (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4), metabolic stability (rat and human liver microsomes), and cell-membrane permeability (Caco-2). They showed favorable in vitro ADME properties as well as favorable calculated druglike and experimental physicochemical properties. Furthermore, compounds 7 f and 17 a, for example, displayed high selectivity (affinity) for the sigma1 receptor against a wide range of other receptors (>60). With these valuable tool compounds in hand, we are further exploring the role of the sigma1 receptor in relevant animal models corresponding to such medicinal indications as drug abuse, pain, depression, anxiety, and psychosis.


Assuntos
Receptores sigma/metabolismo , Animais , Células CACO-2 , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Ligação Proteica , Ratos , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 15(16): 3679-84, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15982873

RESUMO

The metabolic stability of benzoxazinone derivatives, a potent series of NPY Y5 antagonists, has been investigated. This study resulted in the identification of the structural moieties prone to metabolic transformations and which strongly influenced the in vitro half-life. This provides opportunities to optimize the structure of this new class of NPY Y5 antagonists.


Assuntos
Oxazinas/metabolismo , Oxazinas/farmacologia , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Estrutura Molecular , Oxazinas/química , Receptores de Neuropeptídeo Y/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...