Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 464, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592228

RESUMO

BACKGROUND: Folic acid is a water-soluble B vitamin (B9), which is closely related to the body's immune and other metabolic pathways. The folic acid synthesized by rumen microbes has been unable to meet the needs of high-yielding dairy cows. The incidence rate of subclinical mastitis in dairy herds worldwide ranged between 25%~65% with no obvious symptoms, but it significantly causes a decrease in lactation and milk quality. Therefore, this study aims at exploring the effects of folic acid supplementation on the expression profile of lncRNAs, exploring the molecular mechanism by which lncRNAs regulate immunity in subclinical mastitic dairy cows. RESULTS: The analysis identified a total of 4384 lncRNA transcripts. Subsequently, differentially expressed lncRNAs in the comparison of two groups (SF vs. SC, HF vs. HC) were identified to be 84 and 55 respectively. Furthermore, the weighted gene co-expression network analysis (WGCNA) and the KEGG enrichment analysis result showed that folic acid supplementation affects inflammation and immune response-related pathways. The two groups have few pathways in common. One important lncRNA MSTRG.11108.1 and its target genes (ICAM1, CCL3, CCL4, etc.) were involved in immune-related pathways. Finally, through integrated analysis of lncRNAs with GWAS data and animal QTL database, we found that differential lncRNA and its target genes could be significantly enriched in SNPs and QTLs related to somatic cell count (SCC) and mastitis, such as MSTRG.11108.1 and its target gene ICAM1, CXCL3, GRO1. CONCLUSIONS: For subclinical mastitic cows, folic acid supplementation can significantly affect the expression of immune-related pathway genes such as ICAM1 by regulating lncRNAs MSTRG.11108.1, thereby affecting related immune phenotypes. Our findings laid a ground foundation for theoretical and practical application for feeding folic acid supplementation in subclinical mastitic cows.


Assuntos
Mastite Bovina , RNA Longo não Codificante , Feminino , Bovinos , Animais , Humanos , RNA Longo não Codificante/genética , Mastite Bovina/genética , Mastite Bovina/prevenção & controle , Ácido Fólico/farmacologia , Suplementos Nutricionais
2.
BMC Genomics ; 24(1): 211, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37085748

RESUMO

BACKGROUND: Diarrhea is one of the most common diseases in pig industry, which seriously threatens the health of piglets and causes huge economic losses. Enterotoxigenic Escherichia coli (ETEC) F4 is regarded as the most important cause of diarrhea in piglets. Some pigs are naturally resistant to those diarrheas caused by ETEC-F4, because they have no F4 receptors (F4R) on their small intestine epithelial cells that allow F4 fimbriae adhesion. Circular RNA (circRNA) has been shown to play an important regulatory role in the pathogenesis of disease. We hypothesized that circRNAs may also regulate the adhesion of piglet small intestinal epithelial cells to ETEC F4 fimbriae. However, the circRNA expression profiles of piglets with different Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotypes are still unclear, and the intermediate regulatory mechanisms need to be explored. Hence, the present study assessed the circRNA expression profiling in small intestine epithelial cells of eight male piglets with different ETEC-F4 adhesion phenotypes and ITGB5 genotypes to unravel their regulatory function in susceptibility to ETEC-F4ac diarrhea. Piglets were divided into two groups: non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS: The RNA-seq data analysis identified 13,199 circRNAs from eight samples, most of which were exon-derived. In the small intestine epithelial cells, 305 were differentially expressed (DE) circRNAs between the adhesive and non-adhesive groups; of which 46 circRNAs were upregulated, and 259 were downregulated. Gene ontology and KEGG enrichment analysis revealed that most significantly enriched DE circRNAs' host genes were linked to cytoskeletal components, protein phosphorylation, cell adhesion, ion transport and pathways (such as adherens junction, gap junction) associated with ETEC diarrhea. The circRNA-miRNA-mRNA interaction network was also constructed to elucidate their underlying regulatory relationships. Our results identified several candidate circRNAs that affects susceptibility to ETEC diarrhea. Among them, circ-SORBS1 can adsorb ssc-miR-345-3p to regulate the expression of its host gene SORBS1, thus improving cell adhesion. CONCLUSION: Our results provided insights into the regulation function of circRNAs in susceptibility to ETEC diarrhea of piglets, and enhanced our understanding of the role of circRNAs in regulating ETEC diarrhea, and reveal the great potential of circRNA as a diagnostic marker for susceptibility of ETEC diarrhea in piglets.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Animais , Masculino , Suínos , RNA Circular/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Diarreia/genética , Diarreia/veterinária , Escherichia coli Enterotoxigênica/genética , Intestino Delgado , Células Epiteliais , Doenças dos Suínos/genética
3.
Biology (Basel) ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827157

RESUMO

Mastitis caused by Staphylococcus aureus (S. aureus) infection is one of the most difficult diseases to treat in dairy cattle. Exploring the biological progression of S. aureus mastitis via the interaction between host, pathogen, and environment is the key to an effective and sustainable improvement of animal health. Here, two strains of S. aureus and a strain of MRSA (Methicillin-resistant Staphylococcus aureus) isolated from cows with different inflammation phenotypes were used to challenge Mac-T cells and to investigate their effects on the global transcriptome of the cells, then to explore the potential regulatory mechanisms of folic acid on S. aureus mastitis prevention. Differential gene expression or splicing analysis showed that different strains of S. aureus led to distinct transcriptional responses from the host immune system. Folic acid could protect host defense against the challenge of S. aureus and MRSA partially through activating cytoplasmic DNA sensing and tight junction pathway. ZBP1 at the upstream of cytoplasmic DNA sensing pathway was verified and related to anti-pathogen through RNA interference. Further enrichment analysis using these transcriptome data with cattle large-scale genome-wide association study (GWAS) data confirmed that ZBP1 gene is highly associated with bovine somatic cell score (SCS) trait. Our data shed light on the potential effect of FA through regulating key gene and then protect host cells' defense against S. aureus and MRSA.

4.
BMC Genomics ; 21(1): 780, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172394

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation at the transcriptional and post-transcriptional levels. LncRNAs are belonging to a large class of transcripts with ≥200 nt in length which do not code for proteins, have been widely investigated in various physiological and pathological contexts by high-throughput sequencing techniques and bioinformatics analysis. However, little is known about the regulatory mechanisms by which lncRNAs regulate genes that are associated with Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotype in small intestine epithelial cells of Large White piglets. To address this, we used RNA sequencing to profile lncRNAs and mRNAs of small intestine epithelial cells in Large White piglets differing in their ETEC-F4 adhesion phenotypes and ITGB5 genotypes. Eight male piglets were used in this study and were divided into two groups on the basis of their adhesion phenotype and ITGB5 genotypes, a candidate gene for F4ac receptor. Non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS: In total, 78 differentially expressed lncRNAs (DE-lncRNA) and 223 differentially expressed mRNAs (log2 |FC| > 1, P < 0.05) were identified in the comparison of non-adhesive vs. adhesive small intestine epithelial cells. Furthermore, cis- and trans-regulatory target genes of DE-lncRNAs were identified, then interaction networks of lncRNAs and their cis- and trans-target differentially expressed genes (DEGs) were constructed separately. A total of 194 cis-targets were involved in the lncRNAs-cis genes interaction network and 61 trans-targets, were involved in lncRNA-trans gene interaction network that we constructed. We determined that cis-target genes were involved in alcoholism, systemic lupus erythematosus, viral carcinogenesis and malaria. Whereas trans-target DEGs were engaged in three important pathways related to the ETEC-F4 adhesion phenotype namely cGMP-PKG signaling pathway, focal adhesion, and adherens junction. The trans-target DEGs which directly involved in these pathways are KCNMB1 in cGMP-PKG signaling pathway, GRB2 in focal adhesion pathway and ACTN4 in focal adhesion and adherens junction pathways. CONCLUSION: The findings of the current study provides an insight into biological functions and epigenetic regulatory mechanism of lncRNAs on porcine small intestine epithelial cells adhesion to ETEC-F4-ac and piglets' diarrhea susceptibility/resistance.


Assuntos
Escherichia coli Enterotoxigênica , Proteínas de Escherichia coli , RNA Longo não Codificante , Animais , Proteínas da Membrana Bacteriana Externa , Escherichia coli Enterotoxigênica/genética , Células Epiteliais , Intestino Delgado , Masculino , Fenótipo , RNA Mensageiro/genética , Suínos
5.
J Anim Sci Biotechnol ; 11: 98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944235

RESUMO

BACKGROUND: Mastitis in dairy cows caused by Staphylococcus aureus is a major problem hindering economic growth in dairy farms worldwide. It is difficult to prevent or eliminate due to its asymptomatic nature and long persistence of infection. Although transcriptomic responses of bovine mammary gland cells to pathogens that cause mastitis have been studied, the common responses of peripheral blood leukocytes to S. aureus infection across two consecutive generations of dairy cattle have not been investigated. METHODS: In the current study, RNA-Seq was used to profile the transcriptomes of peripheral blood leukocytes sampled from S. aureus-infected mothers and their S. aureus-infected daughters, and also healthy non-infected mothers and their healthy daughters. Differential gene expression was evaluated as follows: 1) S. aureus-infected cows versus healthy non-infected cows (S vs. H, which include all the mothers and daughters), 2) S. aureus-infected mothers versus healthy non-infected mothers (SM vs. HM), and 3) S. aureus-infected daughters versus healthy non-infected daughters (SMD vs. HMD). RESULTS: Analysis of all identified expressed genes in the four groups (SM, SMD, HM, and HMD) showed that EPOR, IL9, IFNL3, CCL26, IL26 were exclusively expressed in both the HM and HMD groups, and that they were significantly (P <  0.05) enriched for the cytokine-cytokine receptor interaction pathway. A total of 17, 13 and 10 differentially expressed genes (DEGs) (FDR P adj. < 0.1 and |FC| > 1.2) were detected in the three comparisons, respectively. DEGs with P <  0.05 and |FC| > 2 were used for functional enrichment analyses. For the S vs. H comparison, DEGs detected included CCL20, IL13 and MMP3, which are associated with the IL-17 signaling pathway. In the SM vs. HM and SMD vs. HMD comparisons, five (BLA-DQB, C1R, C2, FCGR1A, and KRT10) and six (BLA-DQB, C3AR1, CFI, FCAR, FCGR3A, and LOC10498484) genes, respectively, were involved in the S. aureus infection pathway. CONCLUSIONS: Our study provides insights into the transcriptomic responses of bovine peripheral blood leukocytes across two generations of cattle naturally infected with S. aureus. The genes highlighted in this study could serve as expression biomarkers for mastitis and may also contain sequence variation that can be used for genetic improvement of dairy cattle for resilience to mastitis.

6.
Genes (Basel) ; 11(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365888

RESUMO

Through long term natural and artificial selection, domestic sheep (Ovis aries) have become adapted to a diverse range of agro-ecological environments and display multiple phenotypic traits. Characterization of diversity and selection signature is essential for genetic improvement, understanding of environmental adaptation, as well as utilization and conservation of sheep genetic resources. Here, we aimed to assess genomic diversity, population structure, and genomic selection among five Chinese native sheep breeds using 600K high density SNP genotypes. A total of 96 animals of the five breeds were selected from different geographical locations with extremely dry or humid conditions. We found a high proportion of informative SNPs, ranging from 93.3% in Yabuyi to 95.5% in Wadi, Hu, and Hetian sheep. The average pairwise population differentiation (FST) between the breeds was 0.048%, ranging from 0.022% to 0.054%, indicating their low to moderate differentiation. PCA, ADMIXTURE, and phylogenetic tree analyses revealed a clustering pattern of the five Chinese sheep breeds according to their geographical distribution, tail type, coat color, body size, and breeding history. The genomic regions under putative selection identified by FST and XP-EHH approaches frequently overlapped across the breeds, and spanned genes associated with adaptation to extremely dry or humid environments, innate and adaptive immune responses, and growth, wool, milk, and reproduction traits. The present study offers novel insight into genomic adaptation to dry and humid climates in sheep among other domestic animals and provides a valuable resource for further investigation. Moreover, it contributes useful information to sustainable utilization and conservation of sheep genetic resources.


Assuntos
Adaptação Fisiológica/genética , Genômica , Seleção Genética/genética , Ovinos/genética , Animais , Cruzamento , China , Genoma/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Ovinos/classificação
7.
Front Genet ; 11: 68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174961

RESUMO

BACKGROUND: Diarrhea represents one of the most frequent major problems during piglets' neonatal and post-weaning periods leading to tremendous economic losses in the swine industry. Enterotoxigenic Escherichia coli (ETEC) F4 is regarded as the most important cause of diarrhea in piglets. However, some pigs are naturally resistant to those diarrheas caused by ETEC-F4, because they have no F4 receptors (F4R) on their small intestine epithelial cells that allow F4 fimbriae attachment. Thus, our study characterized a complete transcriptome of small intestine epithelial cells of Large White piglets using RNA-Seq. The aim of the study was to identify DEGs with regard to differences in the F4R phenotypes and SNP (C/T) genotypes at ITGB5 and important pathways associated with ETEC-F4ac susceptibility in small intestine epithelial cells of Large White piglets and derive molecular markers as a result of loss of F4acR in swine. METHODS: A total of eight samples of small intestine epithelial cells obtained from Large White piglets (35 days old) used in this study were selected on the basis of two criteria. One was the adhesion phenotype to ETEC-F4ac fimbriae, and the other was the comparison of ITGB5 SNP (C > T) genotype sequences across all the samples. The samples were then divided into two groups, non-adhesive with CC genotype (n = 4), and adhesive with TT genotype (n = 4). RESULTS: More down-regulated DEGs (p < 0.05, |log2FC| > 2) were detected in the comparison of non-adhesive vs. adhesive small intestine epithelial cells in the present study. Six genes, of which two (CNGA4, SLC25A31) exclusively expressed and four (HCN4, MYLK, KCNMA1, and KCNMB1) DEGs with up-regulation pattern in adhesive (F4R positive) pigs were involved in two pathways associated with diarrhea. The DEGs with up-regulation pattern in non-adhesive (F4R negative) pigs were mostly engaged in multiple immune response-related pathways. CONCLUSION: The results provide insights on the biology of the phenotypes of F4R positive and negative pigs. One gene (MYLK) located on SSC13 locus for F4acR strongly support that it might have played a role in the adhesion phenotype which was obviously detected by adhesion assay in adhesive (F4R positive) group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...