Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Eur J Endocrinol ; 190(6): 479-488, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38857188

RESUMO

OBJECTIVES: The etiology of central precocious puberty (CPP) has expanded with identification of new genetic causes, including the monogenic deficiency of Makorin-Ring-Finger-Protein-3 (MKRN3). We aimed to assess the prevalence of CPP causes and the predictors of genetic involvement in this phenotype. DESIGN: A retrospective cohort study for an etiological survey of patients with CPP from a single academic center. METHODS: All patients with CPP had detailed medical history, phenotyping, and brain magnetic resonance imaging (MRI); those with negative brain MRI (apparently idiopathic) were submitted to genetic studies, mainly DNA sequencing studies, genomic microarray, and methylation analysis. RESULTS: We assessed 270 patients with CPP: 50 (18.5%) had CPP-related brain lesions (34 [68%] congenital lesions), whereas 220 had negative brain MRI. Of the latter, 174 (165 girls) were included for genetic studies. Genetic etiologies were identified in 22 patients (20 girls), indicating an overall frequency of genetic CPP of 12.6% (22.2% in boys and 12.1% in girls). The most common genetic defects were MKRN3, Delta-Like-Non-Canonical-Notch-Ligand-1 (DLK1), and Methyl-CpG-Binding-Protein-2 (MECP2) loss-of-function mutations, followed by 14q32.2 defects (Temple syndrome). Univariate logistic regression identified family history (odds ratio [OR] 3.3; 95% CI 1.3-8.3; P = .01) and neurodevelopmental disorders (OR 4.1; 95% CI 1.3-13.5; P = .02) as potential clinical predictors of genetic CPP. CONCLUSIONS: Distinct genetic causes were identified in 12.6% patients with apparently idiopathic CPP, revealing the genetic etiology as a relevant cause of CPP in both sexes. Family history and neurodevelopmental disorders were suggested as predictors of genetic CPP. We originally proposed an algorithm to investigate the etiology of CPP including genetic studies.


Assuntos
Puberdade Precoce , Humanos , Puberdade Precoce/genética , Puberdade Precoce/etiologia , Puberdade Precoce/epidemiologia , Feminino , Masculino , Criança , Estudos Retrospectivos , Pré-Escolar , Imageamento por Ressonância Magnética , Ribonucleoproteínas/genética , Estudos de Coortes , Ubiquitina-Proteína Ligases/genética , Mutação , Encéfalo/diagnóstico por imagem
2.
Eur J Endocrinol ; 189(3): 422-428, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703313

RESUMO

BACKGROUND: Several rare loss-of-function mutations of delta-like noncanonical notch ligand 1 (DLK1) have been described in non-syndromic children with familial central precocious puberty (CPP). OBJECTIVE: We investigated genetic abnormalities of DLK1 gene in a French cohort of children with idiopathic CPP. Additionally, we explored the pattern of DLK1 serum levels in patients with CPP and in healthy children at puberty, as well as in wild-type female mice. PATIENTS AND METHODS: Genomic DNA was obtained from 121 French index cases with CPP. Automated sequencing of the coding region of the DLK1 gene was performed in all cases. Serum DLK1 levels were measured by enzyme linked immunosorbent assay (ELISA) in 209 individuals, including 191 with normal pubertal development and in female mice during postnatal pubertal maturation. RESULTS: We identified 2 rare pathogenic DLK1 allelic variants: A stop gain variant (c.372C>A; p.Cys124X) and a start loss variant (c.2T>G; p.Met1?, or p.0) in 2 French girls with CPP. Mean serum DLK1 levels were similar between healthy children and idiopathic CPP children. In healthy individuals, DLK1 levels correlated with pubertal stage: In girls, DLK1 decreased between Tanner stages III and V, whereas in boys, DLK1 decreased between Tanner stages II and V (P = .008 and .016, respectively). Serum levels of Dlk1 also decreased in wild-type female mice. CONCLUSIONS: Novel loss-of-function mutations in DLK1 gene were identified in 2 French girls with CPP. Additionally, we demonstrated a pattern of dynamic changes in circulating DLK1 serum levels in humans and mice during pubertal stages, reinforcing the role of this factor in pubertal timing.


Assuntos
Puberdade Precoce , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Alelos , Proteínas de Ligação ao Cálcio/genética , Ensaio de Imunoadsorção Enzimática , Proteínas de Membrana/genética , Mutação , Puberdade Precoce/genética
3.
Lancet Diabetes Endocrinol ; 11(8): 545-554, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385287

RESUMO

BACKGROUND: Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS: In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS: Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION: We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.


Assuntos
Puberdade Precoce , Síndrome de Rett , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Brasil , Estudos de Coortes , Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante/metabolismo , Puberdade Precoce/genética , Puberdade Precoce/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/complicações
4.
J Clin Endocrinol Metab ; 108(7): 1758-1767, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-36611250

RESUMO

CONTEXT: Central precocious puberty (CPP) can have a familial form in approximately one-quarter of the children. The recognition of this inherited condition increased after the identification of autosomal dominant CPP with paternal transmission caused by mutations in the MKRN3 and DLK1 genes. OBJECTIVE: We aimed to characterize the inheritance and estimate the prevalence of familial CPP in a large multiethnic cohort; to compare clinical and hormonal features, as well as treatment response to GnRH analogs (GnRHa), in children with distinct modes of transmission; and to investigate the genetic basis of familial CPP. METHODS: We retrospectively studied 586 children with a diagnosis of CPP. Patients with familial CPP (n = 276) were selected for clinical and genetic analysis. Data from previous studies were grouped, encompassing sequencing of MKRN3 and DLK1 genes in 204 patients. Large-scale parallel sequencing was performed in 48 individuals from 34 families. RESULTS: The prevalence of familial CPP was estimated at 22%, with a similar frequency of maternal and paternal transmission. Pedigree analyses of families with maternal transmission suggested an autosomal dominant inheritance. Clinical and hormonal features, as well as treatment response to GnRHa, were similar among patients with different forms of transmission of familial CPP. MKRN3 loss-of-function mutations were the most prevalent cause of familial CPP, followed by DLK1 loss-of-function mutations, affecting, respectively, 22% and 4% of the studied families; both affected exclusively families with paternal transmission. Rare variants of uncertain significance were identified in CPP families with maternal transmission. CONCLUSION: We demonstrated a similar prevalence of familial CPP with maternal and paternal transmission. MKRN3 and DLK1 loss-of-function mutations were the major causes of familial CPP with paternal transmission.


Assuntos
Puberdade Precoce , Masculino , Criança , Humanos , Puberdade Precoce/tratamento farmacológico , Puberdade Precoce/epidemiologia , Puberdade Precoce/genética , Estudos Retrospectivos , Mutação , Pai , Padrões de Herança , Ubiquitina-Proteína Ligases/genética , Puberdade
5.
Endocr Rev ; 44(2): 193-221, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35930274

RESUMO

The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.


Assuntos
Doenças Hipotalâmicas , Puberdade Precoce , Humanos , Puberdade Precoce/diagnóstico , Puberdade Precoce/genética , Hormônio Liberador de Gonadotropina/metabolismo , Doenças Hipotalâmicas/complicações , Hipotálamo , Puberdade , Ubiquitina-Proteína Ligases/metabolismo
6.
J Neuroendocrinol ; 34(2): e12979, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33904190

RESUMO

Puberty is a crucial biological process normally occurring at a specific time during the lifespan, during which sexual and somatic maturation are completed, and reproductive capacity is reached. Pubertal timing is not only determined by genetics, but also by endogenous and environmental cues, including nutritional and metabolic signals. During the last decade, we have learned much regarding the essential roles of kisspeptins and the neuropeptide pathways that converge on these neurones to modulate kisspeptin signalling, as well as neurokinin B and dynorphin, the co-transmitters of Kiss1 neurones in the arcuate nucleus, and the effects of melanocortins on puberty. Indeed, melanocortins are involved in transmitting the regulatory actions of metabolic cues on pubertal maturation. Intracellular metabolic sensors, such as the AMP-activated protein kinase and the fuel-sensing deacetylase SIRT1, have been shown to contribute to puberty. Further understanding of these signals and regulatory circuits will help uncover the intimacies of the central control of puberty, as well as how alterations in metabolic status, ranging from undernutrition to obesity, affect the pubertal process. Precocious puberty is rare and has a clear female predominance. Central precocious puberty (CPP) is diagnosed when premature activation of the hypothalamic-pituitary axis occurs. Its causes are heterogeneous, with alterations of the central nervous system being of special interest, and with environmental factors also playing a role in some cases. During the last decade, several mutations in different genes (including KISS1, KISS1R, MKRN3 and DLK1) that cause CPP have been discovered. Loss-of-function mutations in MKRN3 are the most common monogenic cause of CPP known to date. Here, we review and update what is known regarding the genotype-phenotype relationship in patients with CPP.


Assuntos
Puberdade Precoce , Feminino , Humanos , Kisspeptinas/metabolismo , Masculino , Melanocortinas , Puberdade Precoce/genética , Receptores de Kisspeptina-1/genética , Maturidade Sexual/fisiologia , Ubiquitina-Proteína Ligases
7.
J Pediatr Endocrinol Metab ; 34(11): 1371-1377, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34298591

RESUMO

OBJECTIVES: Longer-acting gonadotropin-releasing hormone analogs (GnRHa) have been widely used for central precocious puberty (CPP) treatment. However, the follow-up of patients after this treatment are still scarce. Our aim was to describe anthropometric, metabolic, and reproductive follow-up of CPP patients after treatment with leuprorelin acetate 3-month depot (11.25 mg). METHODS: Twenty-two female patients with idiopathic CPP were treated with leuprorelin acetate 3-month depot (11.25 mg). Their medical records were retrospectively evaluated regarding clinical, hormonal, and imaging aspects before, during, and after GnRHa treatment until adult height (AH). RESULTS: At the diagnosis of CPP, the mean chronological age (CA) was 8.2 ± 1.13 year, and mean bone age (BA) was 10.4 ± 1.4 year. Mean height SDS at the start and the end of GnRHa treatment was 1.6 ± 0.8 and 1.3 ± 0.9, respectively. The mean duration of GnRHa treatment was 2.8 ± 0.8 year. Mean predicted adult heights (PAH) at the start and the end of GnRH treatment was 153.2 ± 8.6 and 164.4 ± 7.3 cm, respectively (p<0.05). The mean AH was 163.2 ± 6.2 cm (mean SDS: 0.1 ± 1). All patients were within their target height (TH) range. There was a decrease in the percentage of overweight and obesity from the diagnosis until AH (39-19% p>0.05). At the AH, the insulin resistance and high LDL levels were identified in 3/17 patients (17.6%) and 2/21 patients (9.5%), respectively. The mean CA of menarche was 12.2 ± 0.5 years. At the AH, PCOS was diagnosed in one patient (4.8%). CONCLUSIONS: Long-term anthropometric, metabolic, and reproductive follow-up of patients with CPP treated with longer-acting GnRHa revealed effectivity, safety, and favorable outcomes.


Assuntos
Estatura/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/análogos & derivados , Leuprolida/uso terapêutico , Menarca/efeitos dos fármacos , Puberdade Precoce/tratamento farmacológico , Reprodução/efeitos dos fármacos , Criança , Feminino , Humanos , Leuprolida/administração & dosagem , Puberdade Precoce/mortalidade , Estudos Retrospectivos , Resultado do Tratamento
8.
J Clin Endocrinol Metab ; 106(4): 1041-1050, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33383582

RESUMO

CONTEXT: Loss-of-function mutations of makorin RING finger protein 3 (MKRN3) are the most common monogenic cause of familial central precocious puberty (CPP). OBJECTIVE: To describe the clinical and hormonal features of a large cohort of patients with CPP due to MKRN3 mutations and compare the characteristics of different types of genetic defects. METHODS: Multiethnic cohort of 716 patients with familial or idiopathic CPP screened for MKRN3 mutations using Sanger sequencing. A group of 156 Brazilian girls with idiopathic CPP (ICPP) was used as control group. RESULTS: Seventy-one patients (45 girls and 26 boys from 36 families) had 18 different loss-of-function MKRN3 mutations. Eight mutations were classified as severe (70% of patients). Among the 71 patients, first pubertal signs occurred at 6.2 ±â€…1.2 years in girls and 7.1 ±â€…1.5 years in boys. Girls with MKRN3 mutations had a shorter delay between puberty onset and first evaluation and higher follicle-stimulating hormone levels than ICPP. Patients with severe MKRN3 mutations had a greater bone age advancement than patients with missense mutations (2.3 ±â€…1.6 vs 1.6 ±â€…1.4 years, P = .048), and had higher basal luteinizing hormone levels (2.2 ±â€…1.8 vs 1.1 ±â€…1.1 UI/L, P = .018) at the time of presentation. Computational protein modeling revealed that 60% of the missense mutations were predicted to cause protein destabilization. CONCLUSION: Inherited premature activation of the reproductive axis caused by loss-of-function mutations of MKRN3 is clinically indistinct from ICPP. However, the type of genetic defect may affect bone age maturation and gonadotropin levels.


Assuntos
Puberdade Precoce/genética , Ubiquitina-Proteína Ligases/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Família , Feminino , Estudos de Associação Genética , Humanos , Doenças Hipotalâmicas/epidemiologia , Doenças Hipotalâmicas/genética , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Puberdade Precoce/epidemiologia
9.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32676665

RESUMO

BACKGROUND: Central precocious puberty (CPP) has been associated with loss-of-function mutations in 2 paternally expressed genes (MKRN3 and DLK1). Rare defects in the DLk1 were also associated with poor metabolic phenotype at adulthood. OBJECTIVE: Our aim was to investigate genetic and biochemical aspects of DLK1 in a Spanish cohort of children with CPP without MKRN3 mutations. PATIENTS: A large cohort of children with idiopathic CPP (Spanish PUBERE Registry) was studied. Genomic deoxyribonucleic acid was obtained from 444 individuals (168 index cases) with CPP and their close relatives. Automatic sequencing of MKRN3 and DLK1 genes were performed. RESULTS: Five rare heterozygous mutations of MKRN3 were initially excluded in girls with familial CPP. A rare allelic deletion (c.401_404 + 8del) in the splice site junction of DLK1 was identified in a Spanish girl with sporadic CPP. Pubertal signs started at 5.7 years. Her metabolic profile was normal. Familial segregation analysis showed that the DLK1 deletion was de novo in the affected child. Serum DLK1 levels were undetectable (<0.4 ng/mL), indicating that the deletion led to complete lack of DLK1 production. Three others rare allelic variants of DLK1 were also identified (p.Asn134=; g.-222 C>A and g.-223 G>A) in 2 girls with CPP. However, both had normal DLK1 serum levels. CONCLUSION: Loss-of-function mutations of DLK1 represent a rare cause of CPP, reinforcing a significant role of this factor in human pubertal timing.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Membrana/genética , Puberdade Precoce/genética , Brasil , Proteínas de Ligação ao Cálcio/sangue , Criança , Análise Mutacional de DNA , Feminino , Humanos , Mutação com Perda de Função , Masculino , Proteínas de Membrana/sangue , Puberdade Precoce/sangue , Puberdade Precoce/diagnóstico , Puberdade Precoce/metabolismo , Sítios de Splice de RNA/genética , Ubiquitina-Proteína Ligases/genética
10.
Neuroendocrinology ; 110(7-8): 705-713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31671431

RESUMO

INTRODUCTION: Loss-of-function mutation of MKRN3 represents the most frequent genetic cause of familial central precocious puberty (CPP). The outcomes of gonadotropin-releasing hormone analog (GnRHa) treatment in CPP patients with MKRN3 defects are unknown. OBJECTIVE: To describe the clinical and hormonal features of patients with CPP with or without MKRN3 mutations after GnRHa treatment. Anthropometric, metabolic and reproductive parameters were evaluated. PATIENTS AND METHODS: Twenty-nine female patients with CPP due to loss-of-function mutations in the MKRN3 and 43 female patients with idiopathic CPP were included. Their medical records were retrospectively evaluated for clinical, laboratory, and imaging study, before, during, and after GnRHa treatment. All patients with idiopathic CPP and 11 patients with CPP due to MKRN3 defects reached final height (FH). RESULTS: At the diagnosis, there were no significant differences between clinical and laboratory features of patients with CPP with or without MKRN3 mutations. A high prevalence of overweight and obesity was observed in patients with CPP with or without MKRN3 mutations (47.3 and 50%, respectively), followed by a significant reduction after GnRHa treatment. No significant differences in the values of mean FH and target height were found between the 2 CPP groups after GnRHa treatment. Menarche occurred at the expected age in patients with or without CPP due to MKRN3 mutations (11.5 ± 1.3 and 12 ± 0.6 years, respectively). The prevalence of polycystic ovarian syndrome was 9.1% in patients with CPP due to MKRN3 mutations and 5.9% in those with idiopathic CPP. CONCLUSION: Anthropometric, metabolic, and reproductive outcomes after GnRHa treatment were comparable in CPP patients, with or without MKRN3 mutations, suggesting the absence of deleterious effects of MKRN3 defects in young female adults' life.


Assuntos
Fármacos para a Fertilidade Feminina/uso terapêutico , Puberdade Precoce/tratamento farmacológico , Puberdade Precoce/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Estatura/efeitos dos fármacos , Estatura/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/uso terapêutico , Gônadas/efeitos dos fármacos , Gônadas/fisiologia , Humanos , Mutação com Perda de Função , Sobrepeso/diagnóstico , Sobrepeso/epidemiologia , Sobrepeso/genética , Obesidade Infantil/diagnóstico , Obesidade Infantil/epidemiologia , Obesidade Infantil/genética , Prevalência , Prognóstico , Puberdade Precoce/diagnóstico , Puberdade Precoce/epidemiologia , Estudos Retrospectivos , Resultado do Tratamento
11.
Arch Endocrinol Metab ; 63(4): 438-444, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31460623

RESUMO

Pubertal timing in humans is determined by complex interactions including hormonal, metabolic, environmental, ethnic, and genetic factors. Central precocious puberty (CPP) is defined as the premature reactivation of the hypothalamic-pituitary-gonadal axis, starting before the ages of 8 and 9 years in girls and boys, respectively; familial CPP is defined by the occurrence of CPP in two or more family members. Pioneering studies have evidenced the participation of genetic factors in pubertal timing, mainly identifying genetic causes of CPP in sporadic and familial cases. In this context, rare activating mutations were identified in genes of the kisspeptin excitatory pathway (KISS1R and KISS1 mutations). More recently, loss-of-function mutations in two imprinted genes (MKRN3 and DLK1) have been identified as important causes of familial CPP, describing novel players in the modulation of the hypothalamic-pituitary-gonadal axis in physiological and pathological conditions. MKRN3 mutations are the most common cause of familial CPP, and patients with MKRN3 mutations present clinical features indistinguishable from idiopathic CPP. Meanwhile, adult patients with DLK1 mutations present high frequency of metabolic alterations (overweight/obesity, early onset type 2 diabetes and hyperlipidemia), indicating that DLK1 may be a novel link between reproduction and metabolism. Arch Endocrinol Metab. 2019;63(4):438-44.


Assuntos
Puberdade Precoce/genética , Proteínas de Ligação ao Cálcio , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Kisspeptinas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metilação , Mutação , Fenótipo , Puberdade Precoce/etiologia , Receptores de Kisspeptina-1/genética , Ribonucleoproteínas/genética , Ubiquitina-Proteína Ligases
12.
J Endocr Soc ; 3(8): 1574-1582, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31384718

RESUMO

CONTEXT: No consensus has been reached regarding the glucocorticoid (GC) to use for congenital adrenal hyperplasia (CAH) during adulthood. Dexamethasone (DEX), because of its longer half-life, could improve compliance; however, no data are available regarding the long-term effects of DEX therapy. OBJECTIVE: To analyze the metabolic effect of DEX therapy for adults with CAH. DESIGN: Retrospective analysis of a CAH cohort receiving DEX therapy. SETTING: Medical School Hospital, São Paulo University, Brazil. PARTICIPANTS: Sixty patients with well-controlled classic CAH (41 women; 30 with salt-wasting) receiving DEX after achievement of final height. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Clinical, laboratory, and metabolic data were compared immediately before DEX and at the last evaluation. RESULTS: The mean age at the last evaluation was 31.9 ± 9.6 years, and the duration of DEX therapy was 11.5 ± 4.9 years. The mean DEX dose was 0.18 ± 0.07 mg/m2/d. The body mass index SD score (1.6 ± 1.6 vs 1.5 ± 1.5 mg/m2; P = 0.65) and obesity prevalence (27% vs 27%) did not differ between evaluations. However, the waist/height ratio (WtHR) had increased from 0.54 ± 0.08 to 0.56 ± 0.1 (P = 0.001). An increase in the homeostatic model assessment for insulin resistance index (2.5 ± 1.3 vs 2.8 ± 1.7; P = 0.03) was observed and positively correlated with the WtHR (r = 0.54). The prevalence of metabolic syndrome (7% vs 10%; P = 0.7) and hypertension (15% vs 13.3%; P = 0.8) did not differ significantly between the two evaluations. CONCLUSIONS: Long-term and low-dose DEX therapy did not lead to increases in obesity or metabolic syndrome, although it was associated with an increased WtHR and greater homeostatic model assessment for insulin resistance observed with chronic use of GCs. DEX appears to be an acceptable option to treat adult CAH.

13.
Arch. endocrinol. metab. (Online) ; 63(4): 438-444, July-Aug. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1019366

RESUMO

ABSTRACT Pubertal timing in humans is determined by complex interactions including hormonal, metabolic, environmental, ethnic, and genetic factors. Central precocious puberty (CPP) is defined as the premature reactivation of the hypothalamic-pituitary-gonadal axis, starting before the ages of 8 and 9 years in girls and boys, respectively; familial CPP is defined by the occurrence of CPP in two or more family members. Pioneering studies have evidenced the participation of genetic factors in pubertal timing, mainly identifying genetic causes of CPP in sporadic and familial cases. In this context, rare activating mutations were identified in genes of the kisspeptin excitatory pathway (KISS1R and KISS1 mutations). More recently, loss-of-function mutations in two imprinted genes (MKRN3 and DLK1) have been identified as important causes of familial CPP, describing novel players in the modulation of the hypothalamic-pituitary-gonadal axis in physiological and pathological conditions. MKRN3 mutations are the most common cause of familial CPP, and patients with MKRN3 mutations present clinical features indistinguishable from idiopathic CPP. Meanwhile, adult patients with DLK1 mutations present high frequency of metabolic alterations (overweight/obesity, early onset type 2 diabetes and hyperlipidemia), indicating that DLK1 may be a novel link between reproduction and metabolism. Arch Endocrinol Metab. 2019;63(4):438-44


Assuntos
Humanos , Puberdade Precoce/genética , Fenótipo , Puberdade Precoce/etiologia , Ribonucleoproteínas/genética , Proteínas de Ligação ao Cálcio , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Kisspeptinas/genética , Receptores de Kisspeptina-1/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metilação , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...