Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 9(9): 2377-2394, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957462

RESUMO

The heritability of gene expression is critical in understanding heterosis and is dependent on allele-specific regulation by local and remote factors in the genome. We used RNA-Seq to test whether variation in gene expression among F1 and F2 intraspecific Salix purpurea progeny is attributable to cis- and trans-regulatory divergence. We assessed the mode of inheritance based on gene expression levels and allele-specific expression for F1 and F2 intraspecific progeny in two distinct tissue types: shoot tip and stem internode. In addition, we explored sexually dimorphic patterns of inheritance and regulatory divergence among F1 progeny individuals. We show that in S. purpurea intraspecific crosses, gene expression inheritance largely exhibits a maternal dominant pattern, regardless of tissue type or pedigree. A significantly greater number of cis- and trans-regulated genes coincided with upregulation of the maternal parent allele in the progeny, irrespective of the magnitude, whereas the paternal allele was higher expressed for genes showing cis × trans or compensatory regulation. Importantly, consistent with previous genetic mapping results for sex in shrub willow, we have delimited sex-biased gene expression to a 2 Mb pericentromeric region on S. purpurea chr15 and further refined the sex determination region. Altogether, our results offer insight into the inheritance of gene expression in S. purpurea as well as evidence of sexually dimorphic expression which may have contributed to the evolution of dioecy in Salix.


Assuntos
Regulação da Expressão Gênica de Plantas , Salix/genética , Transcriptoma , Genes Dominantes , Genoma de Planta
2.
Plant J ; 85(3): 378-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26712107

RESUMO

The phenylpropanoid biosynthetic pathway that generates lignin subunits represents a significant target for altering the abundance and composition of lignin. The global regulators of phenylpropanoid metabolism may include MYB transcription factors, whose expression levels have been correlated with changes in secondary cell wall composition and the levels of several other aromatic compounds, including anthocyanins and flavonoids. While transcription factors correlated with downregulation of the phenylpropanoid biosynthesis pathway have been identified in several grass species, few transcription factors linked to activation of this pathway have been identified in C4 grasses, some of which are being developed as dedicated bioenergy feedstocks. In this study we investigated the role of SbMyb60 in lignin biosynthesis in sorghum (Sorghum bicolor), which is a drought-tolerant, high-yielding biomass crop. Ectopic expression of this transcription factor in sorghum was associated with higher expression levels of genes involved in monolignol biosynthesis, and led to higher abundances of syringyl lignin, significant compositional changes to the lignin polymer and increased lignin concentration in biomass. Moreover, transgenic plants constitutively overexpressing SbMyb60 also displayed ectopic lignification in leaf midribs and elevated concentrations of soluble phenolic compounds in biomass. Results indicate that overexpression of SbMyb60 is associated with activation of monolignol biosynthesis in sorghum. SbMyb60 represents a target for modification of plant cell wall composition, with the potential to improve biomass for renewable uses.


Assuntos
Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Propanóis/metabolismo , Sorghum/genética , Biomassa , Regulação para Baixo , Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sorghum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Environ Manage ; 150: 39-47, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25460422

RESUMO

Herbaceous bioenergy crops, including sorghum, switchgrass, and miscanthus, were evaluated for their potential as phytoremediators for the uptake of phosphorus in the Delmarva Peninsula and their subsequent conversion to biofuel intermediates (bio-oil) by fast pyrolysis using pyrolysis-gas chromatography/mass spectroscopy. Four cultivars of sorghum, five cultivars of switchgrass and one miscanthus (Miscanthus × giganteus) were grown in soils with two different levels of poultry manure (PM) applications. Little variation was seen in phosphorus uptake in the two different soils indicating that the levels of available phosphorus in the soil already saturated the uptake ability of the plants. However, all plants regardless of trial took up more phosphorus than that measured for the non- PM treated control. Sorghum accumulated greater levels of nutrients including phosphorus and potassium compared to switchgrass and miscanthus. The levels of these nutrients in the biomass did not have an effect on carbohydrate contents. However, the potential yield and composition of bio-oil from fast pyrolysis were affected by both agronomics and differences in mineral concentrations.


Assuntos
Criação de Animais Domésticos , Biocombustíveis/análise , Fósforo/metabolismo , Poaceae/metabolismo , Solo/química , Animais , Galinhas , Delaware , Poluentes Ambientais/química , Humanos , Maryland , Virginia
4.
BMC Plant Biol ; 14: 74, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24661804

RESUMO

BACKGROUND: Genetic improvement of shrub willow (Salix), a perennial energy crop common to temperate climates, has led to the development of new cultivars with improved biomass yield, pest and disease resistance, and biomass composition suitable for bioenergy applications. These improvements have largely been associated with species hybridization, yet little is known about the genetic mechanisms responsible for improved yield and performance of certain willow species hybrids. RESULTS: The top performing genotypes in this study, representing advanced pedigrees compared with those in previous studies, were mostly triploid in nature and outperformed current commercial cultivars. Of the genotypes studied, the diploids had the lowest mean yield of 8.29 oven dry Mg ha-1 yr-1, while triploids yielded 12.65 Mg ha-1 yr-1, with the top five producing over 16 Mg ha-1 yr-1. Triploids had high stem area and height across all three years of growth in addition to greatest specific gravity. The lowest specific gravity was observed among the tetraploid genotypes. Height was the early trait most correlated with and the best predictor of third-year yield. CONCLUSIONS: These results establish a paradigm for future breeding and improvement of Salix bioenergy crops based on the development of triploid species hybrids. Stem height and total stem area are effective traits for early prediction of relative yield performance.


Assuntos
Biomassa , Cruzamento/métodos , Diploide , Hibridização Genética , Salix/crescimento & desenvolvimento , Salix/genética , Triploidia , Análise de Variância , Genótipo , Análise dos Mínimos Quadrados , Linhagem , Caules de Planta/anatomia & histologia , Salix/anatomia & histologia , Gravidade Específica
5.
Front Plant Sci ; 4: 57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23532212

RESUMO

In the conversion of woody biomass feedstocks into liquid fuel ethanol, the pretreatment process is the most critical and costly step. Variations in biomass composition based on genetic differences or environmental effects have a significant impact on the degree of accessibility accomplished by pretreatment and subsequent sugar release by enzymatic hydrolysis. To evaluate this, biomass from 10 genetically diverse, genotypes of shrub willow (Salix spp.) was pretreated with a hot-water process at two levels of severity, hydrolyzed using a combination of two commercial enzyme cocktails, and the release of hexose and pentose monomers was quantified by high-performance liquid chromatography. Among the genotypes selected for analysis, cellulose content ranged from 39 to 45% (w/w) and lignin content ranged from 20 to 23% (w/w) at harvest. Differences in the effectiveness of the pretreatment process were observed among the various willow genotypes. Correlations were identified between total sugar release and % cellulose and % lignin content. There was a significant effect of pretreatment severity on polysaccharide accessibility, but the response to pretreatments was different among the genotypes. At the high severity pretreatment 'SV1' was the least recalcitrant with sugar release representing as much as 60% of total biomass. These results suggest that structural, as well as chemical characteristics of the biomass may influence pretreatment and hydrolytic efficiency.

6.
Biotechnol Biofuels ; 5: 5, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22316115

RESUMO

BACKGROUND: There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. RESULTS: We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.). CONCLUSION: Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality.

7.
Appl Biochem Biotechnol ; 145(1-3): 3-11, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18425606

RESUMO

The cultivation of shrub willow (Salix spp.) bioenergy crops is being commercialized in North America, as it has been in Europe for many years. Considering the high genetic diversity and ease of hybridization, there is great potential for genetic improvement of shrub willow through traditional breeding. The State University of New York-College of Environmental Science and Forestry has an extensive breeding program for the genetic improvement of shrub willow for biomass production and for other environmental applications. Since 1998, breeding efforts have produced more than 200 families resulting in more than 5,000 progeny. The goal for this project was to utilize a rapid, low-cost method for the compositional analysis of willow biomass to aid in the selection of willow clones for improved conversion efficiency. A select group of willow clones was analyzed using high-resolution thermogravimetric analysis (HR-TGA), and significant differences in biomass composition were observed. Differences among and within families produced through controlled pollinations were observed, as well as differences by age at time of sampling. These results suggest that HR-TGA has a great promise as a tool for rapid biomass characterization.


Assuntos
Celulose/análise , Lignina/análise , Caules de Planta/química , Salix/química , Termogravimetria/métodos , Biomassa , Celulose/química , Lignina/química , Caules de Planta/classificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie
8.
Tree Physiol ; 28(12): 1793-803, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19193562

RESUMO

We analyzed effects of nitrogen availability and form on growth rates, concentrations of polyamines and inorganic ions and glutamine synthetase activity in in-vitro-cultured red spruce (Picea rubens Sarg.) cells. Growth rates, concentrations of polyamines and glutamine synthetase activity declined when either the amount of nitrate or the total amount of N in the culture medium was reduced. When total N in the medium was increased, cell mass increased without significant changes in glutamine synthetase activity or polyamine concentration. Reductions in the amount of nitrate or total N in the culture medium resulted in increased accumulations of Ca, Mn and Zn in the cells, and K accumulation decreased in response to decreasing nitrate:ammonium ratios. The data indicate that changes in total N availability as well as the forms of N play important roles in the physiological responses of in-vitro-grown red spruce cells that mimic the observed responses of forest trees to soil N deficiency and N fertilization.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Nitrogênio/farmacologia , Picea/metabolismo , Poliaminas/metabolismo , Células Cultivadas , Meios de Cultura , Íons/metabolismo , Nitratos/farmacologia , Picea/citologia , Picea/efeitos dos fármacos , Picea/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Compostos de Potássio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA