Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(9): e0056422, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993778

RESUMO

The transcriptomes of Zymomonas mobilis 2032 were captured during the fermentation of ammonia fiber expansion (AFEX)-pretreated corn stover and switchgrass hydrolysates containing different concentrations of glucose and xylose. RNA samples were collected when Z. mobilis was fermenting glucose or xylose. Here, we present transcriptome sequencing (RNA-Seq) data obtained during separate phases of glucose or xylose consumption.

2.
Synth Syst Biotechnol ; 7(2): 738-749, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35387233

RESUMO

Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe-S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol.

3.
ChemSusChem ; 13(8): 1922, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32285625

RESUMO

Invited for this month's cover is the research team from the D.O.E. Great Lake Bioenergy Research Center (GLBRC) at the University of Wisconsin-Madison. The cover image shows how a diverse team with expertise in many different fields works together in an integrated fashion to address complex problems. Only when the whole system, from field to the liquid fuels and co-products, is assessed, can we identify the key parameters needed to design an economically viable biorefinery-based economy. Cover art by Chelsea Mamott. The Full Paper itself is available at 10.1002/cssc.201903345.

4.
ChemSusChem ; 13(8): 2012-2024, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31984673

RESUMO

The hydroxycinnamic acids p-coumaric acid (pCA) and ferulic acid (FA) add diversity to the portfolio of products produced by using grass-fed lignocellulosic biorefineries. The level of lignin-bound pCA in Zea mays was modified by the alteration of p-coumaroyl-CoA monolignol transferase expression. The biomass was processed in a lab-scale alkaline-pretreatment biorefinery process and the data were used for a baseline technoeconomic analysis to determine where to direct future research efforts to couple plant design to biomass utilization processes. It is concluded that future plant engineering efforts should focus on strategies that ramp up accumulation of one type of hydroxycinnamate (pCA or FA) predominantly and suppress that of the other. Technoeconomic analysis indicates that target extraction titers of one hydroxycinnamic acid need to be >50 g kg-1 biomass, at least five times higher than observed titers for the impure pCA/FA product mixture from wild-type maize. The technical challenge for process engineers is to develop a viable process that requires more than 80 % reduction of the isolation costs.

5.
Front Microbiol ; 10: 2596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787963

RESUMO

Utilization of both C5 and C6 sugars to produce biofuels and bioproducts is a key goal for the development of integrated lignocellulosic biorefineries. Previously we found that although engineered Zymomonas mobilis 2032 was able to ferment glucose to ethanol when fermenting highly concentrated hydrolyzates such as 9% glucan-loading AFEX-pretreated corn stover hydrolyzate (9% ACSH), xylose conversion after glucose depletion was greatly impaired. We hypothesized that impaired xylose conversion was caused by lignocellulose-derived inhibitors (LDIs) in hydrolyzates. To investigate the effects of LDIs on the cellular physiology of Z. mobilis during fermentation of hydrolyzates, including impacts on xylose utilization, we generated synthetic hydrolyzates (SynHs) that contained nutrients and LDIs at concentrations found in 9% ACSH. Comparative fermentations of Z. mobilis 2032 using SynH with or without LDIs were performed, and samples were collected for end product, transcriptomic, metabolomic, and proteomic analyses. Several LDI-specific effects were observed at various timepoints during fermentation including upregulation of sulfur assimilation and cysteine biosynthesis, upregulation of RND family efflux pump systems (ZMO0282-0285) and ZMO1429-1432, downregulation of a Type I secretion system (ZMO0252-0255), depletion of reduced glutathione, and intracellular accumulation of mannose-1P and mannose-6P. Furthermore, when grown in SynH containing LDIs, Z. mobilis 2032 only metabolized ∼50% of xylose, compared to ∼80% in SynH without LDIs, recapitulating the poor xylose utilization observed in 9% ACSH. Our metabolomic data suggest that the overall flux of xylose metabolism is reduced in the presence of LDIs. However, the expression of most genes involved in glucose and xylose assimilation was not affected by LDIs, nor did we observe blocks in glucose and xylose metabolic pathways. Accumulations of intracellular xylitol and xylonic acid was observed in both SynH with and without LDIs, which decreased overall xylose-to-ethanol conversion efficiency. Our results suggest that xylose metabolism in Z. mobilis 2032 may not be able to support the cellular demands of LDI mitigation and detoxification during fermentation of highly concentrated lignocellulosic hydrolyzates with elevated levels of LDIs. Together, our findings identify several cellular responses to LDIs and possible causes of impaired xylose conversion that will enable future strain engineering of Z. mobilis.

6.
Microb Cell Fact ; 17(1): 5, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329531

RESUMO

BACKGROUND: Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. RESULTS: Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. CONCLUSIONS: We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain. This strain represents a xylose fermenting yeast specifically tailored to GVL produced hydrolysates.


Assuntos
Engenharia Genética/métodos , Genômica/métodos , Lactonas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Biocatálise , Biocombustíveis , Biomassa , Carboxiliases/deficiência , Carboxiliases/genética , Farmacorresistência Fúngica , Ergosterol/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Fermentação , Lignina/metabolismo , Mutação , Proteômica , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
7.
J Microbiol ; 55(10): 816-822, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28956357

RESUMO

The Escherichia coli cAMP receptor protein (CRP) utilizes the helix-turn-helix motif for DNA binding. The CRP's recognition helix, termed F-helix, includes a stretch of six amino acids (Arg180, Glu181, Thr182, Val183, Gly184, and Arg185) for direct DNA contacts. Arg180, Glu181 and Arg185 are known as important residues for DNA binding and specificity, but little has been studied for the other residues. Here we show that Gly184 is another F-helix residue critical for the transcriptional activation function of CRP. First, glycine was repeatedly selected at CRP position 184 for its unique ability to provide wild type-level transcriptional activation activity. To dissect the glycine requirement, wild type CRP and mutants G184A, G184F, G184S, and G184Y were purified and their in vitro DNA-binding activity was measured. G184A and G184F displayed reduced DNA binding, which may explain their low transcriptional activation activity. However, G184S and G184Y displayed apparently normal DNA affinity. Therefore, an additional factor is needed to account for the diminished transcriptional activation function in G184S and G184Y, and the best explanation is perturbations in their interaction with RNA polymerase. The fact that glycine is the smallest amino acid could not fully warrant its suitability, as shown in this study. We hypothesize that Gly184 fulfills the dual functions of DNA binding and RNA polymerase interaction by conferring conformational flexibility to the F-helix.


Assuntos
Sítios de Ligação , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteína Receptora de AMP Cíclico/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Ligação Proteica/fisiologia , Conformação Proteica
8.
Biotechnol Biofuels ; 9: 237, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826356

RESUMO

BACKGROUND: Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strains of Saccharomyces cerevisiae and Zymomonas mobilis. A chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates. RESULTS: While most corn stover and switchgrass hydrolysates were readily fermented, growth of S. cerevisiae was completely inhibited in hydrolysate generated from drought-stressed switchgrass. Based on chemical genomics analysis, yeast strains deficient in genes related to protein trafficking within the cell were significantly more resistant to the drought-year switchgrass hydrolysate. Detailed biomass and hydrolysate characterization revealed that switchgrass accumulated greater concentrations of soluble sugars in response to the drought and these sugars were subsequently degraded to pyrazines and imidazoles during ammonia-based pretreatment. When added ex situ to normal switchgrass hydrolysate, imidazoles and pyrazines caused anaerobic growth inhibition of S. cerevisiae. CONCLUSIONS: In response to the osmotic pressures experienced during drought stress, plants accumulate soluble sugars that are susceptible to degradation during chemical pretreatments. For ammonia-based pretreatment, these sugars degrade to imidazoles and pyrazines. These compounds contribute to S. cerevisiae growth inhibition in drought-year switchgrass hydrolysate. This work discovered that variation in environmental conditions during the growth of bioenergy crops could have significant detrimental effects on fermentation organisms during biofuel production. These findings are relevant to regions where climate change is predicted to cause an increased incidence of drought and to marginal lands with poor water-holding capacity, where fluctuations in soil moisture may trigger frequent drought stress response in lignocellulosic feedstocks.

9.
Biotechnol Biofuels ; 8: 180, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583044

RESUMO

BACKGROUND: Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics during the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. RESULTS: Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. CONCLUSIONS: Our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate, and also showed negligible effects on microbial performance. Although the levels of some of the lignocellulose degradation inhibitors were elevated by autoclaving the feedstocks prior to enzymatic hydrolysis, no significant effects on cell growth, sugar utilization, or ethanol production were seen during bacterial or yeast fermentations in hydrolysates produced using the two different methods.

10.
J Biol Chem ; 290(44): 26587-96, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26378231

RESUMO

The Escherichia coli cAMP receptor protein (CRP) requires cAMP binding to undergo a conformational change for DNA binding and transcriptional regulation. Two CRP residues, Thr(127) and Ser(128), are known to play important roles in cAMP binding through hydrogen bonding and in the cAMP-induced conformational change, but the connection between the two is not completely clear. Here, we simultaneously randomized the codons for these two residues and selected CRP mutants displaying high CRP activity in a cAMP-producing E. coli. Many different CRP mutants satisfied the screening condition for high CRP activity, including those that cannot form any hydrogen bonds with the incoming cAMP at the two positions. In vitro DNA-binding analysis confirmed that these selected CRP mutants indeed display high CRP activity in response to cAMP. These results indicate that the hydrogen bonding ability of the Thr(127) and Ser(128) residues is not critical for the cAMP-induced CRP activation. However, the hydrogen bonding ability of Thr(127) and Ser(128) was found to be important in attaining high cAMP affinity. Computational analysis revealed that most natural cAMP-sensing CRP homologs have Thr/Ser, Thr/Thr, or Thr/Asn at positions 127 and 128. All of these pairs are excellent hydrogen bonding partners and they do not elevate CRP activity in the absence of cAMP. Taken together, our analyses suggest that CRP evolved to have hydrogen bonding residues at the cAMP pocket residues 127 and 128 for performing dual functions: preserving high cAMP affinity and keeping CRP inactive in the absence of cAMP.


Assuntos
Proteína Receptora de AMP Cíclico/química , AMP Cíclico/química , DNA Bacteriano/química , Evolução Molecular Direcionada , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Alostérica , Códon , Cristalografia por Raios X , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Transcrição Gênica
11.
PLoS One ; 9(9): e107499, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25222864

RESUMO

The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.


Assuntos
Biocombustíveis , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Amônia/metabolismo , Anaerobiose , Biomassa , Etanol/metabolismo , Fermentação , Engenharia Genética , Hidrólise , Saccharomyces cerevisiae/enzimologia , Xilose/genética , Zea mays/metabolismo
12.
J Bacteriol ; 193(18): 4859-68, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764924

RESUMO

Vfr, a transcription factor homologous to the Escherichia coli cyclic AMP (cAMP) receptor protein (CRP), regulates many aspects of virulence in Pseudomonas aeruginosa. Vfr, like CRP, binds to cAMP and then recognizes its target DNA and activates transcription. Here we report that Vfr has important functional differences from CRP in terms of ligand sensing and response. First, Vfr has a significantly higher cAMP affinity than does CRP, which might explain the mysteriously unidirectional functional complementation between the two proteins (S. E. H. West et al., J. Bacteriol. 176:7532-7542, 1994). Second, Vfr is activated by both cAMP and cGMP, while CRP is specific to cAMP. Mutagenic analyses show that Thr133 (analogous to Ser128 of CRP) is the key residue for both of these distinct Vfr properties. On the other hand, substitutions that cause cAMP-independent activity in Vfr are similar to those seen in CRP, suggesting that a common cAMP activation mechanism is present. In the course of these analyses, we found a remarkable class of Vfr variants that have completely reversed the regulatory logic of the protein: they are active in DNA binding without cAMP and are strongly inhibited by cAMP. The physiological impact of Vfr's ligand sensing and response is discussed, as is a plausible basis for the fundamental change in protein allostery in the novel group of Vfr variants.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/genética , Análise Mutacional de DNA , Cinética , Ligação Proteica , Pseudomonas aeruginosa/genética , Fatores de Virulência/biossíntese
13.
J Bacteriol ; 192(11): 2711-21, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20363937

RESUMO

GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme (UTase/UR) and is believed to be the primary sensor of nitrogen status in the cell by sensing the level of glutamine in enteric bacteria. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of P(II) protein; P(II) in turn regulates a variety of other proteins. GlnD appears to have four distinct domains: an N-terminal nucleotidyltransferase (NT) domain; a central HD domain, named after conserved histidine and aspartate residues; and two C-terminal ACT domains, named after three of the allosterically regulated enzymes in which this domain is found. Here we report the functional analysis of these domains of GlnD from Escherichia coli and Rhodospirillum rubrum. We confirm the assignment of UTase activity to the NT domain and show that the UR activity is a property specifically of the HD domain: substitutions in this domain eliminated UR activity, and a truncated protein lacking the NT domain displayed UR activity. The deletion of C-terminal ACT domains had little effect on UR activity itself but eliminated the ability of glutamine to stimulate that activity, suggesting a role for glutamine sensing by these domains. The deletion of C-terminal ACT domains also dramatically decreased UTase activity under all conditions tested, but some of these effects are due to the competition of UTase activity with unregulated UR activity in these variants.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mutagênese/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Immunoblotting , Dados de Sequência Molecular , Nucleotidiltransferases/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...