Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Primatol ; 83(12): e23338, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662462

RESUMO

Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators.


Assuntos
Hominidae , África Central , África Ocidental , Animais , República Centro-Africana , Coleta de Dados , Gorilla gorilla , Pan troglodytes
2.
Behav Processes ; 142: 131-137, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28666782

RESUMO

This report describes bonobo (Pan paniscus, Hominidae) behavioral flexibility and inter-community differences with high tannin level fruit processing. In fruiting plants, tannin should discourage certain seed dispersers (direct deterrence hypothesis) such as primates. Based on data deriving from five study sites; LuiKotale, Lomako, Wamba, Malebo and Manzano, we compare consumption and dispersal of fruit species rich in tannins: Parinari and Musanga pulp was chewed across all communities probably for saliva tannin neutralisation. However, consumption of the fruits of Canarium schweinfurthii was observed in few communities only with differences in the food process: While bonobos of Wamba, Lomako and Manzano crunched and swallowed the pulp, bonobos of LuiKotale ingested entire fruits, extracted intact fruits from feces, and re-ingested their pulp, spitting the seed after a retention time of 24h in the digestive tract (i.e. endozoochory). We discuss potential functions of this peculiar feeding technique, likely to be a cultural behavior.


Assuntos
Comportamento Alimentar , Frutas , Pan paniscus , Taninos , Animais , Frutas/química , Características de Residência , Taninos/análise
3.
Am J Primatol ; 78(12): 1326-1343, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27463835

RESUMO

The role of spatial scale in ecological pattern formation such as the geographical distribution of species has been a major theme in research for decades. Much progress has been made on identifying spatial scales of habitat influence on species distribution. Generally, the effect of a predictor variable on a response is evaluated over multiple, discrete spatial scales to identify an optimal scale of influence. However, the idea to identify one optimal scale of predictor influence is misleading. Species-environment relationships across scales are usually sigmoid increasing or decreasing rather than humped-shaped, because environmental conditions are generally highly autocorrelated. Here, we use nest count data on bonobos (Pan paniscus) to build distribution models which simultaneously evaluate the influence of several predictors at multiple spatial scales. More specifically, we used forest structure, availability of fruit trees and terrestrial herbaceous vegetation (THV) to reflect environmental constraints on bonobo ranging, feeding and nesting behaviour, respectively. A large number of models fitted the data equally well and revealed sigmoidal shapes for bonobo-environment relationships across scales. The influence of forest structure increased with distance and became particularly important, when including a neighbourhood of at least 750 m around observation points; for fruit availability and THV, predictor influence decreased with increasing distance and was mainly influential below 600 and 300 m, respectively. There was almost no difference in model fit, when weighing predictor values within the extraction neighbourhood by distance compared to simply taking the arithmetic mean of predictor values. The spatial scale models provide information on bonobo nesting preferences and are useful for the understanding of bonobo ecology and conservation, such as in the context of mitigating the impact of logging. The proposed approach is flexible and easily applicable to a wide range of species, response and predictor variables and over diverse spatial scales and ecological settings.


Assuntos
Ecologia , Comportamento de Nidação , Pan paniscus , Animais , Ecossistema , Florestas
4.
PLoS One ; 10(11): e0142146, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555144

RESUMO

CONTEXT: Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. METHODS: Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). RESULTS: Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was explained by species only (45%) followed by a redundant part between species and regeneration guilds (36%). Despite substantial variation in wood specific gravity profiles among species and regeneration guilds, we found that values from the outer wood were strongly correlated to values from the whole profile, without any significant bias. In addition, we found that wood specific gravity from the DRYAD global repository may strongly differ depending on the species (up to 40% for Dialium pachyphyllum). MAIN CONCLUSION: Therefore, when estimating forest biomass in specific sites, we recommend the systematic collection of outer wood samples on dominant species. This should prevent the main errors in biomass estimations resulting from wood specific gravity and allow for the collection of new information to explore the intraspecific variation of mechanical properties of trees.


Assuntos
Biomassa , Gravidade Específica , Árvores , Madeira , África Central
5.
Am J Primatol ; 77(9): 948-962, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25974229

RESUMO

Primates along with many other animal taxa are forced to cope with large shifts in basic ecological conditions because of rapid anthropogenically induced changes of their habitats. One of the coping strategies for primates is to adjust their diet to these changes, and several studies have demonstrated the importance of fallback resources for this. Bonobos, like chimpanzees, might be particularly vulnerable to habitat fragmentation because of their high dependence on fruit availability. Little is known, however, about bonobo feeding ecology in fragmented habitats and their use of fallback resources. In this study, we investigate diet seasonal variation and the exploitation of preferred and fallback foods in a bonobo population living in forest-savannah mosaics. Results show that bonobos have adapted to this fragmented habitat by feeding on only a few fruit species, including an important number of non-tree species (liana, herb and savannah shrub), in comparison to populations living in dense forests. These non-tree plants have been defined as fallback and non-preferred foods, which are most probably consumed to maintain high frugivory. Interestingly, we identified that preferred foods are all typical of mature forests while fallback resources are mainly found in forest edges or disturbed areas. This finding indicates that bonobos prefer to use mature forests when feeding, as they do for nesting, but extend their range use to forest areas in close proximity to humans when the availability of preferred fruits is low. Finally, we show that bonobo diet relies heavily on two abundant fallback fruits: Musanga cecropioides and Marantochloa leucantha. Other studies have demonstrated that the selection of abundant fallback resources enables primates to subsist at high densities and to maintain cohesive groups, as observed at this study site. Our findings suggest that bonobos living in forest-savannah mosaics can be considered as staple fallback food consumers. Am. J. Primatol. 77:948-962, 2015. © 2015 Wiley Periodicals, Inc.

6.
PLoS One ; 9(4): e93742, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24695637

RESUMO

A topic of major interest in socio-ecology is the comparison of chimpanzees and bonobos' grouping patterns. Numerous studies have highlighted the impact of social and environmental factors on the different evolution in group cohesion seen in these sister species. We are still lacking, however, key information about bonobo social traits across their habitat range, in order to make accurate inter-species comparisons. In this study we investigated bonobo social cohesiveness at nesting sites depending on fruit availability in the forest-savannah mosaic of western Democratic Republic of Congo (DRC), a bonobo habitat which has received little attention from researchers and is characterized by high food resource variation within years. We collected data on two bonobo communities. Nest counts at nesting sites were used as a proxy for night grouping patterns and were analysed with regard to fruit availability. We also modelled bonobo population density at the site in order to investigate yearly variation. We found that one community density varied across the three years of surveys, suggesting that this bonobo community has significant variability in use of its home range. This finding highlights the importance of forest connectivity, a likely prerequisite for the ability of bonobos to adapt their ranging patterns to fruit availability changes. We found no influence of overall fruit availability on bonobo cohesiveness. Only fruit availability at the nesting sites showed a positive influence, indicating that bonobos favour food 'hot spots' as sleeping sites. Our findings have confirmed the results obtained from previous studies carried out in the dense tropical forests of DRC. Nevertheless, in order to clarify the impact of environmental variability on bonobo social cohesiveness, we will need to make direct observations of the apes in the forest-savannah mosaic as well as make comparisons across the entirety of the bonobos' range using systematic methodology.


Assuntos
Comportamento Alimentar/fisiologia , Florestas , Frutas , Pradaria , Pan paniscus/fisiologia , Comportamento Social , Animais , Comportamento Animal/fisiologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...