Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32697194

RESUMO

Recognition and rapid degradation of mRNA harboring premature translation termination codons (PTCs) serves to protect cells from accumulating non-functional and potentially toxic truncated polypeptides. Targeting of PTC-containing transcripts is mediated by the nonsense-mediated mRNA decay (NMD) pathway and requires a conserved set of proteins including UPF1, an RNA helicase whose ATPase activity is essential for NMD. Previously, we identified a functional interaction between the NMD machinery and terminating ribosomes based on 3' RNA decay fragments that accrue in UPF1 ATPase mutants. Herein, we show that those decay intermediates originate downstream of the PTC and harbor 80S ribosomes that migrate into the mRNA 3' UTR independent of canonical translation. Accumulation of 3' RNA decay fragments is determined by both RNA sequence downstream of the PTC and the inactivating mutation within the active site of UPF1. Our data reveal a failure in post-termination ribosome recycling in UPF1 ATPase mutants.


Assuntos
Códon sem Sentido/metabolismo , RNA Helicases/genética , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Mutação , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Development ; 147(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31857347

RESUMO

Embryonic interneuron development underlies cortical function and its disruption contributes to neurological disease. Yet the mechanisms by which viable interneurons are produced from progenitors remain poorly understood. Here, we demonstrate dosage-dependent requirements of the exon junction complex component Magoh for interneuron genesis in mouse. Conditional Magoh ablation from interneuron progenitors, but not post-mitotic neurons, depletes cortical interneuron number through adulthood, with increased severity in homozygotes. Using live imaging, we discover that Magoh deficiency delays progenitor mitotic progression in a dosage-sensitive fashion, with 40% of homozygous progenitors failing to divide. This shows that Magoh is required in progenitors for both generation and survival of newborn progeny. Transcriptome analysis implicates p53 signaling; moreover, p53 ablation in Magoh haploinsufficient progenitors rescues apoptosis, completely recovering interneuron number. In striking contrast, in Magoh homozygotes, p53 loss fails to rescue interneuron number and mitotic delay, further implicating mitotic defects in interneuron loss. Our results demonstrate that interneuron development is intimately dependent upon progenitor mitosis duration and uncover a crucial post-transcriptional regulator of interneuron fate relevant for neurodevelopmental pathologies.This article has an associated 'The people behind the papers' interview.


Assuntos
Córtex Cerebral/citologia , Interneurônios/fisiologia , Neurogênese/fisiologia , Proteínas Nucleares/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Córtex Cerebral/embriologia , Perfilação da Expressão Gênica , Processamento de Imagem Assistida por Computador , Camundongos , Mitose/fisiologia , Células-Tronco Neurais/fisiologia , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
3.
J Pharmacol Exp Ther ; 360(1): 152-163, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27974648

RESUMO

DNA topoisomerase IIα (TOP2α) is a prominent target for anticancer drugs whose clinical efficacy is often limited by chemoresistance. Using antibody specific for the N-terminal of TOP2α, immunoassays indicated the existence of two TOP2α isoforms, 170 and 90 kDa, present in K562 leukemia cells and in an acquired etoposide (VP-16)-resistant clone (K/VP.5). TOP2α/90 expression was dramatically increased in etoposide-resistant K/VP.5 compared with parental K562 cells. We hypothesized that TOP2α/90 was the translation product of novel alternatively processed pre-mRNA, confirmed by 3'-rapid amplification of cDNA ends, polymerase chain reaction, and sequencing. TOP2α/90 mRNA includes retained intron 19, which harbors an in-frame stop codon, and two consensus poly(A) sites. The processed transcript is polyadenylated. TOP2α/90 mRNA encodes a 90,076-Da translation product missing the C-terminal 770 amino acids of TOP2α/170, replaced by 25 unique amino acids through translation of the exon 19/intron 19 read-through. Immunoassays, utilizing antisera raised against these unique amino acids, confirmed that TOP2α/90 is expressed in both cell types, with overexpression in K/VP.5 cells. Immunodetection of complex of enzyme-to-DNA and single-cell gel electrophoresis (Comet) assays demonstrated that K562 cells transfected with a TOP2α/90 expression plasmid exhibited reduced etoposide-mediated TOP2α-DNA covalent complexes and decreased etoposide-induced DNA damage, respectively, compared with similarly treated K562 cells transfected with empty vector. Because TOP2α/90 lacks the active site tyrosine (Tyr805) of full-length TOP2α, these results strongly suggest that TOP2α/90 exhibits dominant-negative properties. Further studies are underway to characterize the mechanism(s) by which TOP2α/90 plays a role in acquired resistance to etoposide and other TOP2α targeting agents.


Assuntos
Antígenos de Neoplasias/genética , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Íntrons/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Deleção de Sequência , Processamento Alternativo , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Sequência de Bases , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA/química , Humanos , Isoenzimas/química , Isoenzimas/genética , Células K562 , Terapia de Alvo Molecular , Peso Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Nat Commun ; 7: 14021, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008922

RESUMO

Nonsense-mediated mRNA decay (NMD) represents a eukaryotic quality control pathway that recognizes and rapidly degrades transcripts harbouring nonsense mutations to limit accumulation of non-functional and potentially toxic truncated polypeptides. A critical component of the NMD machinery is UPF1, an RNA helicase whose ATPase activity is essential for NMD, but for which the precise function and site of action remain unclear. We provide evidence that ATP hydrolysis by UPF1 is required for efficient translation termination and ribosome release at a premature termination codon. UPF1 ATPase mutants accumulate 3' RNA decay fragments harbouring a ribosome stalled during premature termination that impedes complete degradation of the mRNA. The ability of UPF1 to impinge on premature termination, moreover, requires ATP-binding, RNA-binding and NMD cofactors UPF2 and UPF3. Our results reveal that ATP hydrolysis by UPF1 modulates a functional interaction between the NMD machinery and terminating ribosomes necessary for targeting substrates to accelerated degradation.


Assuntos
Trifosfato de Adenosina/metabolismo , Códon sem Sentido/genética , Terminação Traducional da Cadeia Peptídica , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Hidrólise , Modelos Biológicos , Mutação/genética , Polirribossomos/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA