Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 82: 393-404, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30428418

RESUMO

In this study, a series of novel bis-thiomethylcyclohexanone compounds (3a-3j) were synthesized by the addition of thio-Michael to the bis-chalcones under mild reaction conditions. The bis-thiomethylcyclohexanone derivatives (bis-sulfides) were characterized by 1H NMR, 13C NMR, FTIR and elemental analysis techniques. Furthermore, the molecular and crystal structures of 3h, 3i and 3j compounds were determined by single crystal X-ray diffraction studies. In this study, X-ray crystallography provided an alternative and often-complementary means for elucidating functional groups at the enzyme inhibitory site. Acetylcholinesterase (AChE) is a member of the hydrolase protein super family and has a significant role in acetylcholine-mediated neurotransmission. Here, we report the synthesis and determining of novel bis-thiomethylcyclohexanone compounds based hybrid scaffold of AChE inhibitors. The newly synthesized bis-thiomethylcyclohexanone compounds showed Ki values of in range of 39.14-183.23 nM against human carbonic anhydrase I isoenzyme (hCA I), 46.03-194.02 nM against human carbonic anhydrase II isoenzyme (hCA II), 4.55-32.64 nM against AChE and 12.77-37.38 nM against butyrylcholinesterase (BChE). As a result, novel bis-thiomethylcyclohexanone compounds can have promising anti Alzheimer drug potential and record novel hCA I, and hCA II enzymes inhibitor.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Colinesterase/química , Cicloexanonas/química , Sulfetos/química , Acetazolamida/química , Acetilcolinesterase/química , Butirilcolinesterase/química , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Colinesterase/síntese química , Cristalografia por Raios X , Cicloexanonas/síntese química , Humanos , Cinética , Estrutura Molecular , Sulfetos/síntese química , Tacrina/química
2.
Iran J Pharm Res ; 12(4): 659-69, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24523745

RESUMO

The forced degradation study of lidocaine HCl was carried out according to the ICH guideline Q1A (R2). The degradation conditions were assessed to be hydrolysis, oxidation, photolysis and dry heat during 24 h, 48 h and 72 h and then the samples were investigated by GC-FID method and nuclear magnetic resonance (NMR) spectroscopy. According to these results, the degradation products were not observed in all reaction conditions during the 72 h period. Only spectral changes in the 1H and 13C-NMR spectrum were observed in hydrogen peroxide and acid degradation. As a result of this degradation, n-oxide was formed. After acid-induced degradation with HCl, the secondary amine salt was formed. Furthermore, trifluoroacetic acid (TFA) was used as the acidic media, and the decomposition products were observed. A simple and reliable gas chromatography method with flame ionization detection (GC-FID) was developed and validated for the determination of lidocaine HCl in pharmaceutical formulations in the form of a cream and injections. The GC-FID method can be used for a routine analysis of lidocaine HCl in pharmaceutical formulations and the proposed method, together with NMR spectroscopy, can be applied in stability studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...