Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377314

RESUMO

Adoptive cell transfer (ACT) is a promising approach to cancer immunotherapy, but its efficiency fundamentally depends on the extent of tumor-specific T cell enrichment within the graft. This can be estimated via activation with identifiable neoantigens, tumor-associated antigens (TAAs), or living or lysed tumor cells, but these approaches remain laborious, time-consuming, and functionally limited, hampering clinical development of ACT. Here, we demonstrate that homology cluster analysis of T cell receptor (TCR) repertoires efficiently identifies tumor-reactive TCRs allowing to: (1) detect their presence within the pool of tumor-infiltrating lymphocytes (TILs); (2) optimize TIL culturing conditions, with IL-2low/IL-21/anti-PD-1 combination showing increased efficiency; (3) investigate surface marker-based enrichment for tumor-targeting T cells in freshly isolated TILs (enrichment confirmed for CD4+ and CD8+ PD-1+/CD39+ subsets), or re-stimulated TILs (informs on enrichment in 4-1BB-sorted cells). We believe that this approach to the rapid assessment of tumor-specific TCR enrichment should accelerate T cell therapy development.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Antígenos de Neoplasias/metabolismo , Humanos , Linfócitos do Interstício Tumoral , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Cancer Immunol Res ; 10(3): 343-353, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013004

RESUMO

Cancer immunotherapy is predominantly based on T cell-centric approaches. At the same time, the adaptive immune response in the tumor environment also includes clonally produced immunoglobulins and clonal effector/memory B cells that participate in antigen-specific decisions through their interactions with T cells. Here, we investigated the role of infiltrating B cells in bladder cancer via patient dataset analysis of intratumoral immunoglobulin repertoires. We showed that the IgG1/IgA ratio is a prognostic indicator for several subtypes of bladder cancer and for the whole IMVigor210 anti-PD-L1 immunotherapy study cohort. A high IgG1/IgA ratio associated with the prominence of a cytotoxic gene signature, T-cell receptor signaling, and IL21-mediated signaling. Immunoglobulin repertoire analysis indicated that effector B-cell function, rather than clonally produced antibodies, was involved in antitumor responses. From the T-cell side, we normalized a cytotoxic signature against the extent of immune cell infiltration to neutralize the artificial sampling-based variability in immune gene expression. Resulting metrics reflected proportion of cytotoxic cells among tumor-infiltrating immune cells and improved prediction of anti-PD-L1 responses. At the same time, the IgG1/IgA ratio remained an independent prognostic factor. Integration of the B-cell, natural killer cell, and T-cell signatures allowed for the most accurate prediction of anti-PD-L1 therapy responses. On the basis of these findings, we developed a predictor called PRedIctive MolecUlar Signature (PRIMUS), which outperformed PD-L1 expression scores and known gene signatures. Overall, PRIMUS allows for reliable identification of responders among patients with muscle-invasive urothelial carcinoma, including the subcohort with the low-infiltrated "desert" tumor phenotype.


Assuntos
Antineoplásicos , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Antineoplásicos/uso terapêutico , Antígeno B7-H1 , Carcinoma de Células de Transição/tratamento farmacológico , Feminino , Humanos , Imunoglobulina A , Imunoglobulina G/metabolismo , Imunoterapia/métodos , Linfócitos do Interstício Tumoral , Masculino , Viés de Seleção
3.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679873

RESUMO

Poly-(ADP-ribosyl)-ation (PARylation) is a reversible post-translational modification of proteins and DNA that plays an important role in various cellular processes such as DNA damage response, replication, transcription, and cell death. Here we designed a fully genetically encoded fluorescent sensor for poly-(ADP-ribose) (PAR) based on Förster resonance energy transfer (FRET). The WWE domain, which recognizes iso-ADP-ribose internal PAR-specific structural unit, was used as a PAR-targeting module. The sensor consisted of cyan Turquoise2 and yellow Venus fluorescent proteins, each in fusion with the WWE domain of RNF146 E3 ubiquitin ligase protein. This bipartite sensor named sPARroW (sensor for PAR relying on WWE) enabled monitoring of PAR accumulation and depletion in live mammalian cells in response to different stimuli, namely hydrogen peroxide treatment, UV irradiation and hyperthermia.


Assuntos
Proteínas de Bactérias/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/análise , Proteínas Luminescentes/análise , Poli Adenosina Difosfato Ribose/análise , Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Linhagem Celular , Corantes Fluorescentes/metabolismo , Humanos , Proteínas Luminescentes/genética , Fases de Leitura Aberta , Domínios Proteicos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/genética
4.
Front Oncol ; 10: 385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411589

RESUMO

Substantial effort is being invested in the search for peripheral or intratumoral T cell receptor (TCR) repertoire features that could predict the response to immunotherapy. Here we demonstrate the utility of MiXCR software for TCR and immunoglobulin repertoire extraction from RNA-Seq data obtained from sorted tumor-infiltrating T and B cells. We use this approach to extract TCR repertoires from RNA-Seq data obtained from sorted tumor-infiltrating CD4+ and CD8+ T cells in an HKP1 (KrasG12Dp53-/-) syngeneic mouse model of lung cancer after anti-PD-1 treatment. For both subsets, we demonstrate decreased TCR diversity in response to therapy. At a later time point, repertoire diversity is restored in progressing disease but remains decreased in responders to therapy in both CD4+ and CD8+ subsets. These observations complement previous studies and suggest that stably increased intratumoral CD4+ and CD8+ T cell clonality after anti-PD-1/PD-L1 therapy could serve as a predictor of long-term response.

5.
Front Oncol ; 10: 512, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457825

RESUMO

There is considerable clinical and fundamental value in measuring the clonal heterogeneity of T and B cell expansions in tumors and tumor-associated lymphoid structures-along with the associated heterogeneity of the tumor neoantigen landscape-but such analyses remain challenging to perform. Here, we propose a straightforward approach to analyze the heterogeneity of immune repertoires between different tissue sections in a quantitative and controlled way, based on a beta-binomial noise model trained on control replicates obtained at the level of single-cell suspensions. This approach allows to identify local clonal expansions with high accuracy. We reveal in situ proliferation of clonal T cells in a mouse model of melanoma, and analyze heterogeneity of immunoglobulin repertoires between sections of a metastatically-infiltrated lymph node in human melanoma and primary human colon tumor. On the latter example, we demonstrate the importance of training the noise model on datasets with depth and content that is comparable to the samples being studied. Altogether, we describe here the crucial basic instrumentarium needed to facilitate proper experimental setup planning in the rapidly evolving field of intratumoral immune repertoires, from the wet lab to bioinformatics analysis.

6.
Nat Rev Immunol ; 20(5): 294-307, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31988391

RESUMO

Recent data show that B cells and plasma cells located in tumours or in tumour-draining lymph nodes can have important roles in shaping antitumour immune responses. In tumour-associated tertiary lymphoid structures, T cells and B cells interact and undergo cooperative selection, specialization and clonal expansion. Importantly, B cells can present cognate tumour-derived antigens to T cells, with the functional consequences of such interactions being shaped by the B cell phenotype. Furthermore, the isotype and specificity of the antibodies produced by plasma cells can drive distinct immune responses. Here we summarize our current knowledge of the roles of B cells and antibodies in the tumour microenvironment. Moreover, we discuss the potential of using immunoglobulin repertoires as a source of tumour-specific receptors for immunotherapy or as biomarkers to predict the efficacy of immunotherapeutic interventions.


Assuntos
Anticorpos Antineoplásicos/imunologia , Linfócitos B/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Anticorpos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Imunoglobulina A/imunologia , Imunoglobulina D/imunologia , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Depleção Linfocítica , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Plasmócitos/imunologia , Linfócitos T/imunologia , Evasão Tumoral/imunologia
7.
Cell Mol Life Sci ; 77(21): 4429-4440, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31894363

RESUMO

Fluorescent proteins are commonly used to label target proteins in live cells. However, the conventional approach based on covalent fusion of targeted proteins with fluorescent protein probes is limited by the slow rate of fluorophore maturation and irretrievable loss of fluorescence due to photobleaching. Here, we report a genetically encoded protein labeling system utilizing transient interactions of small, 21-28 residues-long helical protein tags (K/E coils, KEC). In this system, a protein of interest, covalently tagged with a single coil, is visualized through binding to a cytoplasmic fluorescent protein carrying a complementary coil. The reversible heterodimerization of KECs, whose affinity can be tuned in a broad concentration range from nanomolar to micromolar, allows continuous exchange and replenishment of the tag bound to a targeted protein with the entire cytosolic pool of soluble fluorescent coils. We found that, under conditions of partial illumination of living cells, the photostability of labeling with KECs exceeds that of covalently fused fluorescent probes by approximately one order of magnitude. Similarly, single-molecule localization microscopy with KECs provided higher labeling density and allowed a much longer duration of imaging than with conventional fusion to fluorescent proteins. We also demonstrated that this method is well suited for imaging newly synthesized proteins, because the labeling efficiency by KECs is not dependent on the rate of fluorescent protein maturation. In conclusion, KECs can be used to visualize various target proteins which are directly exposed to the cytosol, thereby enabling their advanced characterization in time and space.


Assuntos
Corantes Fluorescentes/química , Proteínas/análise , Animais , Linhagem Celular , Sobrevivência Celular , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/análise , Camundongos , Microscopia de Fluorescência , Imagem Óptica , Fotólise , Multimerização Proteica , Ratos , Coloração e Rotulagem
8.
Proc Natl Acad Sci U S A ; 116(52): 27043-27052, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843915

RESUMO

The light-sensitive outer segment of the vertebrate photoreceptor is a highly modified primary cilium filled with disc-shaped membranes that provide a vast surface for efficient photon capture. The formation of each disc is initiated by a ciliary membrane evagination driven by an unknown molecular mechanism reportedly requiring actin polymerization. Since a distinct F-actin network resides precisely at the site of disc morphogenesis, we employed a unique proteomic approach to identify components of this network potentially driving disc morphogenesis. The only identified actin nucleator was the Arp2/3 complex, which induces the polymerization of branched actin networks. To investigate the potential involvement of Arp2/3 in the formation of new discs, we generated a conditional knockout mouse lacking its essential ArpC3 subunit in rod photoreceptors. This knockout resulted in the complete loss of the F-actin network specifically at the site of disc morphogenesis, with the time course of ArpC3 depletion correlating with the time course of F-actin loss. Without the actin network at this site, the initiation of new disc formation is completely halted, forcing all newly synthesized membrane material to be delivered to the several nascent discs whose morphogenesis had already been in progress. As a result, these discs undergo uncontrolled expansion instead of normal enclosure, which leads to formation of unusual, large membrane whorls. These data suggest a model of photoreceptor disc morphogenesis in which Arp2/3 initiates disc formation in a "lamellipodium-like" mechanism.

9.
Proc Natl Acad Sci U S A ; 115(50): 12728-12732, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478037

RESUMO

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.


Assuntos
Fungos/genética , Proteínas Luminescentes/genética , Sequência de Aminoácidos , Animais , Vias Biossintéticas/genética , Ácidos Cafeicos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Duplicação Gênica/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Alinhamento de Sequência , Xenopus laevis
10.
Nat Methods ; 15(8): 601-604, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988095

RESUMO

Reversibly photoswitchable fluorescent proteins (rsFPs) are gaining popularity as tags for optical nanoscopy because they make it possible to image with lower light doses. However, green rsFPs need violet-blue light for photoswitching, which is potentially phototoxic and highly scattering. We developed new rsFPs based on FusionRed that are reversibly photoswitchable with green-orange light. The rsFusionReds are bright and exhibit rapid photoswitching, thereby enabling nanoscale imaging of living cells.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Linhagem Celular , Humanos , Microscopia Intravital/métodos , Cinética , Luz , Microscopia de Fluorescência/métodos , Nanotecnologia , Processos Fotoquímicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Espectrofotometria , Proteína Vermelha Fluorescente
11.
Chem Biol Drug Des ; 91(1): 294-303, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28815904

RESUMO

Natural antimicrobial peptides (AMPs) are important components of the innate immune system with a wide spectrum of biological activity. In this study, we investigated the cytotoxic effect of three recombinant ß-hairpin cationic AMPs: arenicin-1 from the polychaeta Arenicola marina, tachyplesin I from the horseshoe crab Tachypleus tridentatus, and gomesin from the spider Acanthoscurria gomesiana. All the three ß-hairpin AMPs were overexpressed in Escherichia coli. Different cell lines were incubated with various concentrations of the investigated AMPs in order to evaluate their cytotoxic activity. Double staining with subsequent flow cytometric analysis was used to determine the predominant way of cell death mediated by each AMP. Hemolytic activity of the peptides was tested against fresh human red blood cells. Our results indicated that all the three AMPs exhibited significant cytotoxic effect against cancer cells that varied depending on the cell line type and, in most cases, on the presence of serum components. Flow cytometric analysis implicitly indicated that tachyplesin I mostly promoted late apoptosis/necrosis, while arenicin-1 and gomesin induced early apoptosis under the same conditions. Tachyplesin I proved to be the most promising therapeutic candidate as it displayed the highest specific cytotoxicity against cancer cell lines, independent of the serum presence.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/farmacologia , Proteínas de Helminto/farmacologia , Peptídeos Cíclicos/farmacologia , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Escherichia coli/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
12.
Aging (Albany NY) ; 8(10): 2449-2462, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27744420

RESUMO

Cellular senescence, a form of cell cycle arrest, is one of the cellular responses to different types of exogenous and endogenous damage. The senescence phenotype can be induced in vitro by oncogene overexpression and/or DNA damage. Recently, we have reported a novel mechanism of cellular senescence induction by mild genotoxic stress. Specifically, we have shown that the formation of a small number of DNA lesions in normal and cancer cells during S phase leads to cellular senescence-like arrest within the same cell cycle. Here, based on this mechanism, we suggest an approach to remotely induce premature senescence in human cell cultures using short-term light irradiation. We used the genetically encoded photosensitizers, tandem KillerRed and miniSOG, targeted to chromatin by fusion to core histone H2B to induce moderate levels of DNA damage by light in S phase cells. We showed that the cells that express the H2B-fused photosensitizers acquire a senescence phenotype upon illumination with the appropriate light source. Furthermore, we demonstrated that both chromatin-targeted tandem KillerRed (produces O2¯) and miniSOG (produces 1O2) induce single-stranded DNA breaks upon light illumination. Interestingly, miniSOG was also able to induce double-stranded DNA breaks.


Assuntos
Senescência Celular/genética , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Luz , Fármacos Fotossensibilizantes/farmacologia , Humanos , Fase S/genética
13.
Biotechniques ; 61(2): 92-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27528074

RESUMO

Genetically encoded photosensitizers represent a promising optogenetic tool for the induction of light-controlled oxidative stress strictly localized to a selected intracellular compartment. Here we tested the phototoxic effects of the flavin-containing phototoxic protein miniSOG targeted to the cytoplasmic surfaces of late endosomes and lysosomes by fusion with Rab7. In HeLa Kyoto cells stably expressing miniSOG-Rab7, we demonstrated a high level of cell death upon blue-light illumination. Pepstatin A completely abolished phototoxicity of miniSOG-Rab7, showing a key role for cathepsin D in this model. Using a far-red fluorescence sensor for caspase-3, we observed caspase-3 activation during miniSOG-Rab7-mediated cell death. We conclude that upon illumination, miniSOG-Rab7 induces lysosomal membrane permeabilization (LMP) and leakage of cathepsins into the cytosol, resulting in caspase-dependent apoptosis.


Assuntos
Morte Celular , Lisossomos , Microscopia de Fluorescência/métodos , Optogenética/métodos , Fármacos Fotossensibilizantes/metabolismo , Oxigênio Singlete/farmacologia , Caspase 3/análise , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Células HeLa , Humanos , Luz , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Fármacos Fotossensibilizantes/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Oxigênio Singlete/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
14.
Cytokine ; 84: 10-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203665

RESUMO

OX40 receptor-expressing regulatory T cells (Tregs) populate tumors and suppress a variety of immune cells, posing a major obstacle for cancer immunotherapy. Different ways to functionally inactivate Tregs by triggering OX40 receptor have been suggested, including anti-OX40 antibodies and Fc:OX40L fusion proteins. To investigate whether the soluble extracellular domain of OX40L (OX40Lexo) is sufficient to enhance antitumor immune response, we generated an OX40Lexo-expressing CT26 colon carcinoma cell line and studied its tumorigenicity in immunocompetent BALB/c and T cell deficient nu/nu mice. We found that soluble OX40L expressed in CT26 colon carcinoma favors the induction of an antitumor response which is not limited just to cells co-expressing EGFP as an antigenic determinant, but also eliminates CT26 cells expressing another fluorescent protein, KillerRed. Tumor rejection required the presence of T lymphocytes, as indicated by the unhampered tumor growth in nu/nu mice. Subsequent re-challenge of tumor-free BALB/c mice with CT26 EGFP cells resulted in no tumor growth, which is indicative of the formation of immunological memory. Adoptive transfer of splenocytes from mice that successfully rejected CT26 OX40Lexo EGFP tumors to naïve mice conferred 100% resistance to subsequent challenge with the CT26 EGFP tumor.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Ligante OX40/metabolismo , Transferência Adotiva/métodos , Animais , Carcinoma/imunologia , Carcinoma/terapia , Linhagem Celular , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Feminino , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Memória Imunológica/imunologia , Memória Imunológica/fisiologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ligante OX40/imunologia , Receptores OX40/imunologia , Receptores OX40/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
15.
J Biomed Opt ; 20(8): 88002, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26277828

RESUMO

The development of tumor therapies based on the activation of antitumor immunity requires tumor models that are highly immunogenic. The immunologic response to fluorescent proteins, green fluorescent protein (GFP), or enhanced GFP (EGFP) was demonstrated in different cancer models. However, for live animal imaging, red and far-red fluorescent proteins are preferable, but their immunogenicity has not been studied. We assessed the immunogenicity of the red fluorescent protein, KillerRed (KR), in CT26 murine colon carcinoma. We showed a slower growth and a lower tumor incidence of KR-expressing tumors in comparison with nonexpressing ones. We found that KR-expressing lung metastases and rechallenged tumors were not formed in mice that had been surgically cured of KR-expressing primary tumors. The effect of low-dose cyclophosphamide (CY) treatment was also tested, as this is known to activate antitumor immune responses. The low-dose CY therapy of CT26-KR tumors resulted in inhibition of tumor growth and improved mouse survival. In summary, we have established a highly immunogenic tumor model that could be valuable for investigations of the mechanisms of antitumor immunity and the development of new therapeutic approaches.


Assuntos
Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/farmacologia , Imunidade Inata/imunologia , Modelos Imunológicos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Imunidade Inata/efeitos dos fármacos , Camundongos
16.
J Biomed Opt ; 19(7): 071403, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24365992

RESUMO

KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.


Assuntos
Apoptose , Proteínas de Fluorescência Verde/química , Lisossomos/química , Necrose , Fármacos Fotossensibilizantes/química , Animais , Linhagem Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/química , Lisossomos/metabolismo , Estresse Oxidativo , Fotoquimioterapia/instrumentação , Fotoquimioterapia/métodos , Ratos , Proteínas rab de Ligação ao GTP/química , proteínas de unión al GTP Rab7 , Proteína Vermelha Fluorescente
17.
Biochim Biophys Acta ; 1830(11): 5059-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23876295

RESUMO

BACKGROUND: Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells. METHODS: HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo. RESULTS: Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG. CONCLUSIONS: miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor. GENERAL SIGNIFICANCE: This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications.


Assuntos
Flavoproteínas/genética , Terapia Genética/métodos , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Morte Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Dermatite Fototóxica/etiologia , Dermatite Fototóxica/genética , Dermatite Fototóxica/metabolismo , Feminino , Flavoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Luz/efeitos adversos , Camundongos , Camundongos Nus , Mitocôndrias/genética , Mitocôndrias/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Biophotonics ; 6(3): 283-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22696211

RESUMO

KillerRed is known to be a unique red fluorescent protein displaying strong phototoxic properties. Its effectiveness has been shown previously for killing bacterial and cancer cells in vitro. Here, we investigated the photototoxicity of the protein on tumor xenografts in mice. HeLa Kyoto cell line stably expressing KillerRed in mitochondria and in fusion with histone H2B was used. Irradiation of the tumors with 593 nm laser led to photobleaching of KillerRed indicating photosensitization reaction and caused significant destruction of the cells and activation of apoptosis. The portion of the dystrophically changed cells increased from 9.9% to 63.7%, and the cells with apoptosis hallmarks from 6.3% to 14%. The results of this study suggest KillerRed as a potential genetically encoded photosensitizer for photodynamic therapy of cancer.


Assuntos
Proteínas Luminescentes/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Transformação Celular Neoplásica , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Cromatina/efeitos da radiação , Feminino , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Imagem Molecular , Fármacos Fotossensibilizantes/metabolismo , Transporte Proteico , Proteína Vermelha Fluorescente
19.
Biochem J ; 435(1): 65-71, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21214518

RESUMO

Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination. Complete light-induced blockage of cell division for approx. 24 h was observed in cultured mammalian cells that were either transiently or stably transfected with H2B-tKR. Illuminated cells then returned to normal division rate. XRCC1 (X-ray cross complementing factor 1) showed immediate redistribution in the illuminated nuclei of H2B-tKR-expressing cells, indicating massive light-induced damage of genomic DNA. Notably, nondisjunction of chromosomes was observed for cells that were illuminated during metaphase. In transgenic Xenopus embryos expressing H2B-tKR under the control of tissue-specific promoters, we observed clear retardation of the development of these tissues in green-light-illuminated tadpoles. We believe that H2B-tKR represents a novel optogenetic tool, which can be used to study mitosis and meiosis progression per se, as well as to investigate the roles of specific cell populations in development, regeneration and carcinogenesis in vivo.


Assuntos
Divisão Celular/efeitos da radiação , Cromatina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Sondas Moleculares/metabolismo , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/metabolismo , Núcleo Celular/metabolismo , Cromatina/efeitos da radiação , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Luz , Proteínas Luminescentes/genética , Sondas Moleculares/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/ultraestrutura , Transporte Proteico/efeitos da radiação , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Xenopus laevis
20.
Photochem Photobiol Sci ; 9(10): 1301-6, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20672171

RESUMO

Green Fluorescent Protein (GFP) and other related fluorescent proteins are generally used as genetically encoded, chemically inert labels in vivo. This review focuses on the emerging application of fluorescent proteins as light-inducible intracellular photochemical partners. The first example of a chemically active GFP-like protein was the phototoxic red fluorescent protein KillerRed, which can be used for precise light-induced killing of cells, protein inactivation, and studying reactive oxygen species signaling in different cellular compartments. Moreover, recent studies revealed that various GFPs can act as light-induced electron donors in photochemical reactions with biologically relevant electron acceptors. These findings have important implications for practical uses of fluorescent proteins as well as for our understanding of the evolution and biology of this protein family.


Assuntos
Proteínas de Fluorescência Verde/química , Luz , Citocromos/química , Transporte de Elétrons , Elétrons , Flavinas/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/toxicidade , Processos Fotoquímicos , Engenharia de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...