Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chirality ; 31(3): 211-218, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30633374

RESUMO

In this study, a total of 10 bacterial strains were screened for their ability to reduce cyclohexyl(phenyl)methanone 1 to its corresponding alcohol. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful biocatalyst to reduce the ketones to the corresponding alcohols. The reaction conditions were systematically optimized for the reducing agent L paracasei BD101, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale asymmetric reduction of cyclohexyl(phenyl)methanone (1) by L paracasei BD101 gave (S)-cyclohexyl(phenyl)methanol (2) with 92% yield and >99% enantiomeric excess. The preparative scale study was carried out, and a total of 5.602 g of (S)-cyclohexyl(phenyl)methanol in high enantiomerically pure form (>99% enantiomeric excess) was produced. L paracasei BD101 has been shown to be an important biocatalyst in asymmetric reduction of bulky substrates. This study demonstrates the first example of the effective synthesis of (S)-cyclohexyl(phenyl)methanol by the L paracasei BD101 as a biocatalyst in preparative scale.

2.
Acta Chim Slov ; 60(2): 287-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23878931

RESUMO

A simple and highly sensitive separation and preconcentration procedure, which has minimal impact on the environment, has been developed. The procedure is based on the carrier element free coprecipitation (CEFC) of Co(II), Cu(II), and Ni(II) ions by using 2-{4-[2-(1H-indol-3-yl)ethyl]-3-(4-methylbenzyl)-5-oxo-4,5-dihydro- 1H-1,2,4-triazol-l-yl}-N'-(pyridin-2-yl methylidene)acetohydrazide (IMOTPA), as an organic coprecipitant. The levels of analyte ions were determined by flame atomic absorption spectrometry (FAAS). The detection limits for Co(II), Cu(II) and Ni(II) ions were found to be 0.40, 0.16 and 0.17 microg L(-1), respectively, and the relative standard deviations for the analyte ions were lower than 3.0%. Spike tests and certified reference material analyses were performed to validate the method. The method was successfully applied for the determination of Co(II), Cu(II) and Ni(II) ions levels in sea and stream water as liquid samples and red pepper, black pepper, and peppermint as solid samples.


Assuntos
Cobalto/análise , Cobre/análise , Contaminação de Alimentos/análise , Níquel/análise , Poluentes Químicos da Água/análise , Limite de Detecção , Modelos Químicos , Padrões de Referência , Espectrofotometria Atômica
3.
Environ Monit Assess ; 185(7): 6003-11, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23184397

RESUMO

The abundantly available industrial waste product Morus alba L. pomace (MAP) is one of the cost-effective biosorbent for removal of metal ions from aqueous solutions. Hence, in the present study, we aimed to test the ability of MAP to remove Cd(II) ions through batch biosorption process. Firstly, MAP was characterized using several techniques, and then the influence of various experimental parameters such as initial pH of the aqueous solution, initial Cd(II) concentration, contact time, MAP concentration, and temperature were evaluated upon the biosorption process. It was found that the maximum uptake of Cd(II) ions occurred at initial pH 6.0 and optimum contact time was observed as 60 min. Cd(II) ions adsorption on MAP analyzed by the Langmuir and Freundlich isotherm models and the maximum monolayer biosorption capacity of MAP was found to be 21.69 mg g(-1) by using the Langmuir isotherm model. The pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models were employed to describe the biosorption kinetics. In order to investigate the thermodynamic properties of the biosorption process, the changes in the Gibbs free energy (∆G), enthalpy (∆H), and entropy (∆S) were also evaluated and it has been concluded that the process was feasible, spontaneous, and endothermic in the temperature range of 5-40 °C.


Assuntos
Cádmio/metabolismo , Morus/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Biodegradação Ambiental , Cádmio/análise , Cátions Bivalentes/análise , Cátions Bivalentes/metabolismo , Concentração de Íons de Hidrogênio , Morus/crescimento & desenvolvimento , Temperatura , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...