Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430472

RESUMO

Laser direct writing technique in glass is a powerful tool for various waveguides' fabrication that highly develop the element base for designing photonic devices. We apply this technique to fabricate waveguides in porous glass (PG). Nanoporous optical materials for the inscription can elevate the sensing ability of such waveguides to higher standards. The waveguides were fabricated by a single-scan approach with femtosecond laser pulses in the densification mode, which resulted in the formation of a core and cladding. Experimental studies revealed three types of waveguides and quantified the refractive index contrast (up to Δn = 1.2·10-2) accompanied with ~1.2 dB/cm insertion losses. The waveguides demonstrated the sensitivity to small objects captured by the nanoporous framework. We noticed that the deposited ethanol molecules (3 µL) on the PG surface influence the waveguide optical properties indicating the penetration of the molecule to its cladding. Continuous monitoring of the output near field intensity distribution allowed us to determine the response time (6 s) of the waveguide buried at 400 µm below the glass surface. We found that the minimum distinguishable change of the refractive index contrast is 2 × 10-4. The results obtained pave the way to consider the waveguides inscribed into PG as primary transducers for sensor applications.

2.
Nanomaterials (Basel) ; 10(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143236

RESUMO

In this work, we suggest the new concept of sensing elements-bulk waveguides (BWGs) fabricated by the laser direct writing technique inside porous glass (PG). BWGs in nanoporous materials are promising to be applied in the photonics and sensors industries. Such light-guiding components interrogate the internal conditions of nanoporous materials and are able to detect chemical or physical reactions occurring inside nanopores especially with small molecules, which represent a separate class for sensing technologies. After the writing step, PG plates are impregnated with the indicator-rhodamine 6G-which penetrates through the nanoporous framework to the BWG cladding. The experimental investigation proved the concept by measuring the spectral characteristics of an output signal. We have demonstrated that the BWG is sensitive to ethanol molecules captured by the nanoporous framework. The sensitivity of the peak shift in the fluorescence spectrum to the refractive index of the solution is quantified as 6250 ± 150 nm/RIU.

3.
Nanomaterials (Basel) ; 10(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521654

RESUMO

Laser-induced structuring in nanoporous glass composites is promising for numerous emerging applications in photonics and plasmonics. Local laser irradiation activates an interplay of photo-thermo-chemical mechanisms that are extremely difficult to control. The choice of optimum laser parameters to fabricate structures with desired properties remains extremely challenging. Another challenging issue is the investigation of the properties of laser-induced buried structures. In this paper, we propose a way to control the plasmonic structures formation inside a nanoporous glass composite with doped silver/copper ions that are induced by laser irradiation. Experimental and numerical investigations both demonstrate the capacities of the procedure proving its validity and application potential. In particular, we register transmitted laser power to analyse and control the modification process. Spectral micro-analysis of the irradiated region shows a multilayer plasmonic structure inside the glass composite. Subsequently, the effective medium theory connects the measured spectral data to the numerically estimated size, concentration, and chemical composition of the secondary phase across the initial GC sample and the fabricated structure.

4.
Opt Express ; 26(21): 28150-28160, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469870

RESUMO

Barriers were produced in porous glass through its local bulk density modification by direct femtosecond writing accompanied by СО2-laser surface thermal densification, to make functional microfluidic elements separated by such physical barriers with different controlled permeability. The separation of multi-component solutions into individual components with different molecule sizes (molecular separation) was performed in this first integrated microfluidic device fabricated in porous glass. Its application in the environmental gas-phase analysis was demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...