Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 8(41): 9576-9588, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33005912

RESUMO

While DNA and messenger RNA (mRNA) based therapies are currently changing the biomedical field, the delivery of genetic materials remains the key problem preventing the wide introduction of these methods into clinical practice. Therefore, the creation of new methods for intracellular gene delivery, particularly to hard-to-transfect, clinically relevant cell populations is a pressing issue. Here, we report on the design of a novel approach to format 50-150 nm calcium carbonate particles in the vaterite state and using them as a template for polymeric core-shell nanoparticles. We apply such core-shell nanoparticles as safe and efficient carriers for mRNA and pDNA. We prove that such nanocarriers are actively internalized by up to 99% of primary T-lymphocytes and exert minimal toxicity with the viability of >90%. We demonstrate that these nanocarriers mediate more efficient transfection compared with the standard electroporation method (90% vs. 51% for mRNA and 62% vs. 39% for plasmid DNA) in primary human T-lymphocytes as a model of the hard to transfect type that is widely used in gene and cell therapy approaches. Importantly, these polymeric nanocarriers can be used in serum containing basic culture medium without special conditions and equipment, thus having potential for being introduced in clinical development. As a result, we have provided proof-of-principle that our nanosized containers represent a promising universal non-viral platform for efficient and safe gene delivery.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/química , Polieletrólitos/química , Células Cultivadas , DNA/administração & dosagem , DNA/genética , Humanos , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Linfócitos T/metabolismo , Transfecção/métodos
2.
Bone Marrow Transplant ; 55(3): 544-552, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31541204

RESUMO

The predictive value of graft composition and plasma biomarkers on the outcome of allogeneic HSCT is well known for conventional GVHD prophylaxis based on calcineurin inhibitors with or without antithymocyte globulin. Currently, there is limited data whether these results could be translated to post transplantation cyclophosphamide (PTCy). The prospective extension cohort of NCT02294552 trial enrolled 79 adult patients with acute leukemia in CR. Twenty-six received matched-related bone marrow (BM) grafts with single-agent PTCy and 53 received unrelated peripheral blood stem cell graft (PBSC) with PTCy, tacrolimus, and MMF. The grafts were studied by the flow cytometry, and plasma samples were analyzed by ELISA. In the cluster and major component analysis, we determined that transplantation from donors with high content of CD3, NKT, and CD16-CD56 + subpopulations in the PBSC grafts was associated with poor immunological recovery and compromised event-free survival (50% vs. 80%, HR 2.93, p = 0.015) both due to increased relapse incidence and non-relapse mortality. The significant independent predictor of moderate and severe chronic GVHD was the high prevalence of and iNKT, Vß11, and double-positive cells in the PBSC grafts from young donors (HR 2.75, p = 0.0483). No patterns could be identified for BM grafts and for plasma biomarkers.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células T Matadoras Naturais , Adulto , Ciclofosfamida , Humanos , Prevalência , Estudos Prospectivos
3.
ACS Appl Mater Interfaces ; 11(14): 13091-13104, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883080

RESUMO

An important area in modern malignant tumor therapy is the optimization of antitumor drugs pharmacokinetics. The use of some antitumor drugs is limited in clinical practice due to their high toxicity. Therefore, the strategy for optimizing the drug pharmacokinetics focuses on the generation of high local concentrations of these drugs in the tumor area with minimal systemic and tissue-specific toxicity. This can be achieved by encapsulation of highly toxic antitumor drug (vincristine (VCR) that is 20-50 times more toxic than widely used the antitumor drug doxorubicin) into nano- and microcarriers with their further association into therapeutically relevant cells that possess the ability to migrate to sites of tumor. Here, we fundamentally examine the effect of drug carrier size on the behavior of human mesenchymal stem cells (hMSCs), including internalization efficiency, cytotoxicity, cell movement, to optimize the conditions for the development of carrier-hMSCs drug delivery platform. Using the malignant tumors derived from patients, we evaluated the capability of hMSCs associated with VCR-loaded carriers to target tumors using a three-dimensional spheroid model in collagen gel. Compared to free VCR, the developed hMSC-based drug delivery platform showed enhanced antitumor activity regarding those tumors that express CXCL12 (stromal cell-derived factor-1 (SDF-1)) gene, inducing directed migration of hMSCs via CXCL12 (SDF-1)/CXCR4 pathway. These results show that the combination of encapsulated antitumor drugs and hMSCs, which possess the properties of active migration into tumors, is therapeutically beneficial and demonstrated high efficiency and low systematic toxicity, revealing novel strategies for chemotherapy in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Células-Tronco Mesenquimais/química , Neoplasias/tratamento farmacológico , Vincristina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/genética , Colágeno/química , Colágeno/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias/patologia , Cultura Primária de Células , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Vincristina/química
4.
Nanomedicine ; 14(1): 97-108, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917642

RESUMO

CRISPR-Cas9 is a revolutionary genome-editing technology that has enormous potential for the treatment of genetic diseases. However, the lack of efficient and safe, non-viral delivery systems has hindered its clinical application. Here, we report on the application of polymeric and hybrid microcarriers, made of degradable polymers such as polypeptides and polysaccharides and modified by silica shell, for delivery of all CRISPR-Cas9 components. We found that these microcarriers mediate more efficient transfection than a commercially available liposome-based transfection reagent (>70% vs. <50% for mRNA, >40% vs. 20% for plasmid DNA). For proof-of-concept, we delivered CRISPR-Cas9 components using our capsules to dTomato-expressing HEK293T cells-a model, in which loss of red fluorescence indicates successful gene editing. Notably, transfection of indicator cells translated in high-level dTomato knockout in approx. 70% of transfected cells. In conclusion, we have provided proof-of-principle that our micro-sized containers represent promising non-viral platforms for efficient and safe gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Polímeros/química , Solanum lycopersicum/metabolismo , Portadores de Fármacos , Fluorescência , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/antagonistas & inibidores , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Solanum lycopersicum/genética , Dióxido de Silício/química
5.
Adv Healthc Mater ; 5(24): 3182-3190, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27860430

RESUMO

Mesenchymal stem cells (MSCs) are widely used in cell therapy due to their convenience, multiline differentiation potential, reproducible protocols, and biological properties. The potential of MSCs to impregnate magnetic microcapsules and their possible influence on cell function and ability to response to magnetic field have been explored. Interestingly, the cells suspended in media show much higher ability in internalization of microcapsules, then MSCs adhere into the surface. There is no significant effect of microcapsules on cell toxicity compared with other cell line-capsule internalization reported in literature. Due to internalization of magnetic capsules by the cells, such cell engineering platform is responsive to external magnetic field, which allows to manipulate MSC migration. Magnetically sorted MSCs are capable to differentiation as confirmed by their conversion to adipogenic and osteogenic cells using standard protocols. There is a minor effect of capsule internalization on cell adhesion, though MSCs are still able to form spheroid made by dozen of thousand MSCs. This work demonstrates the potential of use of microcapsule impregnated MSCs to carry internalized micron-sized vesicles and being navigated with external magnetic signaling.


Assuntos
Cápsulas/administração & dosagem , Cápsulas/efeitos adversos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Adipogenia/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Humanos , Campos Magnéticos/efeitos adversos , Magnetismo/métodos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
J Mater Chem B ; 4(45): 7270-7282, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263729

RESUMO

We designed novel hybrid inorganic/organic capsules with unique physicochemical features enabling multimodal triggering by physical (UV light, ultrasound) and chemical (enzymatic treatment) stimuli. Notably, the UV- and ultrasound response was achieved by a synergetic combination of TiO2 and SiO2 nanostructures which were in situ deposited into the polymer shell of microcapsules during sol-gel synthesis. This results in the formation of a composite hybrid shell with enhanced mechanical stability. Such sol-gel modification reduces the permeability of the capsule shell to allow for small molecule encapsulation. At the same time, these hybrid capsules consist of degradable polypeptides and polysaccharides and can be decomposed in response to enzymatic reaction. Upon employing different modes of treatment (UV-light, ultrasound or enzymatic degradation) we can stimulate different mechanisms of cargo release at desired times. Importantly, such capsules have been shown to be non-cytotoxic and can be internalized into human mesenchymal stem cells (MSCs) and cervical cancer cell lines (HeLa) revealing intracellular degradation. This work demonstrates that our hybrid capsules possess a triple stimuli-responsive effect, which is of capital importance for the future design and application of multimodal responsive platforms to improve externally stimulated release of bioactive compounds and their healthcare performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...