Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(47): 45096-45108, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046310

RESUMO

The comparative study of photocatalytic gold recovery from cyanide-based gold plating solution was explored via commercial and hydrothermally synthesized ZnO nanoparticles (NPs). The effects of hydrothermal temperatures on the properties and photocatalytic activities of synthesized ZnO NPs were investigated. In addition, the effects of operating parameters including types of hole scavenger, concentrations of the best hole scavenger, the initial pH of wastewater, and photocatalyst dosages were examined. The obtained results demonstrated that the commercial ZnO NPs exhibited a higher photocatalytic activity for gold recovery than that of the synthesized ones owing to their good crystal quality and the presence of non-lattice zinc ions and appropriate non-lattice oxygen ions. Via the commercial ZnO NPs, the gold ions were almost completely recovered from the cyanide-based gold plating effluent within 7 h at an initial pH of 11.0 in the presence of 10 vol % C2H5OH and 1.0 g/L of photocatalyst loading with a pseudo-first-order rate constant of 0.2637 h-1. Finally, the resultant gold-decorated ZnO NPs exhibited a higher photocatalytic property for color reduction from industrial wastewater and antibacterial activity than that of fresh ZnO NPs. The results obtained in this study possess benefits and pave the way for waste remediation and management for the plating industries.

2.
Sci Rep ; 13(1): 22752, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123788

RESUMO

Discharging the gold-contained wastewater is an economic loss. In this work, a set of ZnO/WO3 was facile synthesized by hydrothermal method in order to recover gold from the industrial cyanide-based gold plating wastewater by photocatalytic process. Effect of ZnO contents coupled with WO3 was first explored. Then, effects of operating condition including initial pH of wastewater, type of hole scavenger, concentration of the best hole scavenger and photocatalyst dose were explored. A series of experimental results demonstrated that the ZnO/WO3 nanocomposite with 5 wt% ZnO (Z5.0/WO3) depicted the highest photocatalytic activity for gold recovery due to the synergetic effect of oxygen vacancies, a well-constructed ZnO/WO3 heterostructure and an appropriate band position alignment with respect to the redox potentials of [Au(CN)2]- and hole scavengers. Via this ZnO/WO3 nanocomposite, approximately 99.5% of gold ions was recovered within 5 h using light intensity of 3.57 mW/cm2, catalyst dose of 2.0 g/L, ethanol concentration of 20 vol% and initial pH of wastewater of 11.2. In addition, high stability and reusability were observed with the best nanocomposite even at the 5th reuse. This work provides the guidance and pave the way for designing the ZnO/WO3 nanocomposite for precious metal recovery from a real industrial wastewater.

3.
Sci Rep ; 12(1): 21956, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535954

RESUMO

A series of Aux/TiO2 nanoparticles (NPs) with different gold loadings (x = 0.1-1.0 wt%) was synthesized by the photodeposition and then employed as photocatalysts to recover precious component from the industrial gold-cyanide plating wastewater. Effects of Au loading, catalyst dosage and types of hole scavenger on the photocatalytic gold recovery were investigated under ultraviolet-visible (UV-Vis) light irradiation at room temperature. It was found that different Au loadings tuned the light absorption capacity of the synthesized photocatalysts and enhanced the photocatalytic activity in comparison with the bare TiO2 NPs. The addition of CH3OH, C2H5OH, C3H8O, and Na2S2O3 as a hole scavenger significantly promoted the photocatalytic activity of the gold recovery, while the H2O2 did not. Among different hole scavengers employed in this work, the CH3OH exhibited the highest capability to promote the photocatalytic gold recovery. In summary, the Au0.5/TiO2 NPs exhibited the best photocatalytic activity to completely recover gold ions within 30 min at the catalyst dosage of 0.5 g/L, light intensity of 3.20 mW/cm2 in the presence of 20 vol% CH3OH as hole scavenger. The photocatalytic activity slightly decreased after the 5th cycle of recovery process, indicating its high reusability.


Assuntos
Nanopartículas , Águas Residuárias , Peróxido de Hidrogênio , Fotossíntese , Ouro/efeitos da radiação , Cianetos
5.
ACS Omega ; 6(38): 24709-24719, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604653

RESUMO

A series of nonmetal-doped titanium dioxide (Nm x /TiO2, where x is the weight fraction of nonmetal elements) photocatalysts was prepared via ultrasonic-assisted impregnation for simultaneous hydrogen (H2) production and chemical oxygen demand (COD) removal from industrial wastewater. Three types of Nm elements, carbon (C), silicon (Si), and phosphorus (P), were explored. The P1/TiO2 exhibited a higher photocatalytic activity for H2 production and COD removal than the C1/TiO2 and Si1/TiO2 photocatalysts. Approximately 6.43 mmol/g photocatalyst of H2 was produced, and around 26% COD removal was achieved at a P1/TiO2 loading of 4.0 g/L, a light intensity of 5.93 mW/cm2, and a radiation time of 4 h. This is because the P1/TiO2 photocatalyst exhibited lower point of zero charge values and a more appropriate band position compared with other Nm x /TiO2 photocatalysts to produce H+, which can consequently form H2, and reactive oxygen species (HO· and O2 · -), which serve as oxidizing agents to degrade the organic pollutants. Increasing the content of the P element doped into the TiO2-based material up to 7.0% by weight enhanced the H2 production and COD removal up to 8.34 mmol/g photocatalyst and 50.6%, respectively. This is attributed to the combined effect of the point of zero charge value and the S BET of the prepared photocatalysts. The photocatalytic activity of the P7/TiO2 photocatalyst was still higher than the TiO2-based material after the fourth use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...