Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 21(24): 8733-6, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25917930

RESUMO

Attempts to polymerize trinitrobenzene derivatives (TNB) have been fruitless so far. Accordingly, polymers containing TNB have not been exploited in spite of their envisaged potential applications. Here, we describe two ways for preparing polymers with TNB moieties thus overcoming the previously reported polymerization impairments. We also report on the exploitation of the materials, both obtained as tractable transparent films and coated fibers, as smart labels for the visual detection of amine vapors. More precisely, amines in the atmosphere surrounding the sensory materials diffuse into them reacting with the TNB motifs forming highly colored Meisenheimer complexes, giving rise to development of color and to the naked eye sensing phenomenon. This is the case of highly volatile amines, such as trimethylamine, produced in food spoilage, specifically in the deterioration of fish or meat, for which the color development of the smart labels can be used as a visual test for food freshness.


Assuntos
Aminas Biogênicas/química , Embalagem de Alimentos/normas , Trinitrobenzenos/química , Polímeros/química
2.
ACS Macro Lett ; 4(9): 979-983, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35596468

RESUMO

We report herein a fluorescence polymer membrane as a film-shaped solid sensory kit for the detection and quantification in water of saccharides, namely, fructose and glucose, and dopamine. The sensory motifs are phenylboronic acids, which are chemically incorporated in the polymer network in the radically initiated bulk polymerization process. The sensory membrane is fluorescent. The interaction of the sensory motifs with dopamine "turn-off" the fluorescence due to a dynamic quenching, while stable complexes are formed with saccharides giving rise to a fluorescence "turn-on". The variation of the fluorescence intensity and the wavelength of the maxima permitted the titration of the species with a detection limit of 3-4 × 10-4 M. The hydrophilic membrane allowed for the detection in water in spite of the lack of solubility in this medium of the sensory phenylboronic acid derivative monomer.

3.
ACS Appl Mater Interfaces ; 7(1): 921-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25475442

RESUMO

Selective and sensitive solid sensory substrates for detecting Al(III) in pure water are reported. The material is a flexible polymer film that can be handled and exhibits gel behavior and membrane performance. The film features a chemically anchored salicylaldehyde benzoylhydrazone derivative as an aluminum ion fluorescence sensor. A novel procedure for measuring Al(III) at the ppb level using a single solution drop in 20 min was developed. In this procedure, a drop was allowed to enter the hydrophilic material for 15 min before a 5 min drying period. The process forced the Al(III) to interact with the sensory motifs within the membrane before measuring the fluorescence of the system. The limit of detection of Al(III) was 22 ppm. Furthermore, a water-soluble sensory polymer containing the same sensory motifs was developed with a limit of detection of Al(III) of 1.5 ppb, which was significantly lower than the Environmental Protection Agency recommendations for drinking water.


Assuntos
Alumínio/química , Corantes Fluorescentes/química , Polímeros/química , Espectrometria de Fluorescência/métodos , Cátions , Cromatografia , Radicais Livres , Temperatura Alta , Hidrazonas/química , Íons , Espectroscopia de Ressonância Magnética , Teste de Materiais , Membranas Artificiais , Sensibilidade e Especificidade , Solventes/química , Especificidade por Substrato , Água/química
4.
J Hazard Mater ; 276: 52-7, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24862468

RESUMO

A solid substrate comprised of a cross-linked polymer network is shaped as a film with gel-like behaviour and is used to detect aluminium ions in water; concurrently, a water soluble sensory polymer synthesised towards the same purpose is also discussed. The detection in both systems was achieved via fluorescence "turn-on". The limits of detection for Al(III) were 1.6 and 25ppb for the former and latter materials, respectively; these levels are significantly lower than the EPA recommendations for drinking water.


Assuntos
Alumínio/análise , Polímeros/química , Água/química , Fluorescência , Limite de Detecção , Espectroscopia de Ressonância Magnética , Solubilidade
5.
Chem Commun (Camb) ; 50(19): 2484-7, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24457981

RESUMO

This study developed sensory polymeric materials for the colorimetric sensing of TNT in aqueous media. Solid films and coated fabrics permitted the detection of TNT, through colour change, and its quantification, by taking a picture of the materials and processing their RGB parameters to define the evolved colour.

6.
Sensors (Basel) ; 12(3): 2969-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22736987

RESUMO

The preparation of a fluorogenic sensory material for the detection of biomolecules is described. Strategic functionalisation and copolymerisation of a water insoluble organic sensory molecule with hydrophilic comonomers yielded a crosslinked, water-swellable, easy-to-manipulate solid system for water "dip-in" fluorogenic coenzyme A, cysteine, and glutathione detection by means of host-guest interactions. The sensory material was a membrane with gel-like behaviour, which exhibits a change in fluorescence behaviour upon swelling with a water solution of the target molecules. The membrane follows a "turn-on" pattern, which permits the titration of the abovementioned biomolecules. In this way, the water insoluble sensing motif can be exploited in aqueous media. The sensory motif within the membrane is a chemically anchored piperazinedione-derivative with a weakly bound Hg(II). The response is caused by the displacement of the cation from the membrane due to a stronger complexation with the biomolecules, thus releasing the fluorescent sensory moieties within the membrane.


Assuntos
Coenzima A/química , Cisteína/química , Corantes Fluorescentes/química , Glutationa/química , Espectroscopia de Ressonância Magnética , Membranas Artificiais , Piperazinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
7.
J Hazard Mater ; 227-228: 480-3, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22664262

RESUMO

A fluorogenic sensory film, or dense membrane, capable of detecting Cr(VI), Fe(III), and Hg(II) in water was prepared. The film was prepared by a bulk radical polymerization of different comonomers, one of which contained a piperazinedione motif as sensory fluorophore. The film exhibited gel-like behavior and was highly tractable, even after being swollen in water. The sensing conditions were chosen to overcome interference from iron and mercury cations, giving rise to a material with a detection limit of 1 ppb for Cr(VI).


Assuntos
Cromo/análise , Corantes Fluorescentes/química , Metacrilatos/química , Piperazinas/química , Poluentes Químicos da Água/análise , Membranas Artificiais , Polímeros/química
8.
Chem Commun (Camb) ; 46(42): 7951-3, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20859574

RESUMO

This paper describes a strategy followed to achieve a sensing phenomenon in aqueous media using water-insoluble organic molecules. A sensory polymeric material for the colorimetric sensing of cyanide in water has been developed based on the reactivity of this anion with a fluorene derivative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...