Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11071, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745036

RESUMO

The southern coast of Africa is one of the few places in the world where water temperatures are predicted to cool in the future. This endemism-rich coastline is home to two sister species of kelps of the genus Ecklonia maxima and Ecklonia radiata, each associated with specific thermal niches, and occuring primarily on opposite sides of the southern tip of Africa. Historical distribution records indicate that E. maxima has recently shifted its distribution ~ 70 km eastward, to sites where only E. radiata was previously reported. The contact of sister species with contrasting thermal affinities and the occurrence of mixed morphologies raised the hypothesis that hybridization might be occurring in this contact zone. Here we describe the genetic structure of the genus Ecklonia along the southern coast of Africa and investigate potential hybridization and cryptic diversity using a combination of nuclear microsatellites and mitochondrial markers. We found that both species have geographically discrete genetic clusters, consistent with expected phylogeographic breaks along this coastline. In addition, depth-isolated populations were found to harbor unique genetic diversity, including a third Ecklonia lineage. Mito-nuclear discordance and high genetic divergence in the contact zones suggest multiple hybridization events between Ecklonia species. Discordance between morphological and molecular identification suggests the potential influence of abiotic factors leading to convergent phenotypes in the contact zones. Our results highlight an example of cryptic diversity and hybridization driven by contact between two closely related keystone species with contrasting thermal affinities.


Assuntos
Variação Genética , Kelp , Filogenia , Kelp/genética , Kelp/classificação , Filogeografia , Repetições de Microssatélites/genética , Hibridização Genética , DNA Mitocondrial/genética , África Austral
2.
Data Brief ; 52: 110023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293573

RESUMO

Data on contemporary and future geographical distributions of marine species are crucial for guiding conservation and management policies in face of climate change. However, available distributional patterns have overlooked key ecosystem structuring species, despite their numerous ecological and socioeconomic services. Future range estimates are mostly available for few species at regional scales, and often rely on the outdated Representative Concentration Pathway scenarios of climate change, hindering global biodiversity estimates within the framework of current international climate policies. Here, we provide range maps for 980 marine structuring species of seagrasses, kelps, fucoids, and cold-water corals under present-day conditions (from 2010 to 2020) and future scenarios (from 2090 to 2100) spanning from low carbon emission scenarios aligned with the goals of the Paris Agreement (Shared Socioeconomic Pathway 1-1.9), to higher emissions under reduced mitigation strategies (SSP3-7.0 and SSP5-8.5). These models were developed using state-of-the-art and advanced machine learning algorithms linking the most comprehensive and quality-controlled datasets of occurrence records with high-resolution, biologically relevant predictor variables. By integrating the best aspects of species distribution modelling over key ecosystem structuring species, our datasets hold the potential to enhance the ability to inform strategic and effective conservation policy, ultimately supporting the resilience of ocean ecosystems.

3.
Sci Rep ; 13(1): 12046, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491385

RESUMO

The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.


Assuntos
Kelp , Macrocystis , Macrocystis/genética , Ecossistema , Biodiversidade , Florestas , Mudança Climática , Kelp/genética
5.
Data Brief ; 48: 109223, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383736

RESUMO

Species distribution data are key for monitoring present and future biodiversity patterns and informing conservation and management strategies. Large biodiversity information facilities often contain spatial and taxonomic errors that reduce the quality of the provided data. Moreover, datasets are frequently shared in varying formats, inhibiting proper integration and interoperability. Here, we provide a quality-controlled dataset of the diversity and distribution of cold-water corals, which provide key ecosystem services and are considered vulnerable to human activities and climate change effects. We use the common term cold-water corals to refer to species of the orders Alcyonacea, Antipatharia, Pennatulacea, Scleractinia, Zoantharia of the subphylum Anthozoa, and order Anthoathecata of the class Hydrozoa. Distribution records were collated from multiple sources, standardized using the Darwin Core Standard, dereplicated, taxonomically corrected and flagged for potential vertical and geographic distribution errors based on peer-reviewed published literature and expert consulting. This resulted in 817,559 quality-controlled records of 1,170 accepted species of cold-water corals, openly available under the FAIR principle of Findability, Accessibility, Interoperability and Reusability of data. The dataset represents the most updated baseline for the global cold-water coral diversity, and it can be used by the broad scientific community to provide insights into biodiversity patterns and their drivers, identify regions of high biodiversity and endemicity, and project potential redistribution under future climate change. It can also be used by managers and stakeholders to guide biodiversity conservation and prioritization actions against biodiversity loss.

6.
Sci Rep ; 13(1): 9112, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277448

RESUMO

The transport of passively dispersed organisms across tropical margins remains poorly understood. Hypotheses of oceanographic transportation potential lack testing with large scale empirical data. To address this gap, we used the seagrass species, Halodule wrightii, which is unique in spanning the entire tropical Atlantic. We tested the hypothesis that genetic differentiation estimated across its large-scale biogeographic range can be predicted by simulated oceanographic transport. The alternative hypothesis posits that dispersal is independent of ocean currents, such as transport by grazers. We compared empirical genetic estimates and modelled predictions of dispersal along the distribution of H. wrightii. We genotyped eight microsatellite loci on 19 populations distributed across Atlantic Africa, Gulf of Mexico, Caribbean, Brazil and developed a biophysical model with high-resolution ocean currents. Genetic data revealed low gene flow and highest differentiation between (1) the Gulf of Mexico and two other regions: (2) Caribbean-Brazil and (3) Atlantic Africa. These two were more genetically similar despite separation by an ocean. The biophysical model indicated low or no probability of passive dispersal among populations and did not match the empirical genetic data. The results support the alternative hypothesis of a role for active dispersal vectors like grazers.


Assuntos
Fluxo Gênico , Oceanografia , Golfo do México , Genótipo , Região do Caribe , Genética Populacional
7.
Proc Natl Acad Sci U S A ; 120(14): e2209637120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996109

RESUMO

The distribution of mangrove intra-specific biodiversity can be structured by historical demographic processes that enhance or limit effective population sizes. Oceanographic connectivity (OC) may further structure intra-specific biodiversity by preserving or diluting the genetic signatures of historical changes. Despite its relevance for biogeography and evolution, the role of oceanographic connectivity in structuring the distribution of mangrove's genetic diversity has not been addressed at global scale. Here we ask whether connectivity mediated by ocean currents explains the intra-specific diversity of mangroves. A comprehensive dataset of population genetic differentiation was compiled from the literature. Multigenerational connectivity and population centrality indices were estimated with biophysical modeling coupled with network analyses. The variability explained in genetic differentiation was tested with competitive regression models built upon classical isolation-by-distance (IBD) models considering geographic distance. We show that oceanographic connectivity can explain the genetic differentiation of mangrove populations regardless of the species, region, and genetic marker (significant regression models in 95% of cases, with an average R-square of 0.44 ± 0.23 and Person's correlation of 0.65 ± 0.17), systematically improving IBD models. Centrality indices, providing information on important stepping-stone sites between biogeographic regions, were also important in explaining differentiation (R-square improvement of 0.06 ± 0.07, up to 0.42). We further show that ocean currents produce skewed dispersal kernels for mangroves, highlighting the role of rare long-distance dispersal events responsible for historical settlements. Overall, we demonstrate the role of oceanographic connectivity in structuring mangrove intra-specific diversity. Our findings are critical for mangroves' biogeography and evolution, but also for management strategies considering climate change and genetic biodiversity conservation.


Assuntos
Florestas , Áreas Alagadas , Humanos , Biodiversidade , Densidade Demográfica , Deriva Genética , Variação Genética
8.
Ecol Evol ; 13(1): e9740, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36789139

RESUMO

The accurate delimitation of species boundaries in nonbilaterian marine taxa is notoriously difficult, with consequences for many studies in ecology and evolution. Anthozoans are a diverse group of key structural organisms worldwide, but the lack of reliable morphological characters and informative genetic markers hampers our ability to understand species diversification. We investigated population differentiation and species limits in Atlantic (Iberian Peninsula) and Mediterranean lineages of the octocoral genus Paramuricea previously identified as P. clavata. We used a diverse set of molecular markers (microsatellites, RNA-seq derived single-copy orthologues [SCO] and mt-mutS [mitochondrial barcode]) at 49 locations. Clear segregation of Atlantic and Mediterranean lineages was found with all markers. Species-tree estimations based on SCO strongly supported these two clades as distinct, recently diverged sister species with incomplete lineage sorting, P. cf. grayi and P. clavata, respectively. Furthermore, a second putative (or ongoing) speciation event was detected in the Atlantic between two P. cf. grayi color morphotypes (yellow and purple) using SCO and supported by microsatellites. While segregating P. cf. grayi lineages showed considerable geographic structure, dominating circalittoral communities in southern (yellow) and western (purple) Portugal, their occurrence in sympatry at some localities suggests a degree of reproductive isolation. Overall, our results show that previous molecular and morphological studies have underestimated species diversity in Paramuricea occurring in the Iberian Peninsula, which has important implications for conservation planning. Finally, our findings validate the usefulness of phylotranscriptomics for resolving evolutionary relationships in octocorals.

9.
Mitochondrial DNA B Resour ; 7(11): 1985-1988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406821

RESUMO

The Gray's sea fan, Paramuricea grayi (Johnson, 1861), typically inhabits deep littoral and circalittoral habitats of the eastern temperate and tropical Atlantic Ocean. Along the Iberian Peninsula, where P. grayi is a dominant constituent of circalittoral coral gardens, two segregating lineages (yellow and purple morphotypes) were recently identified using single-copy nuclear orthologues. The mitochondrial genomes of 9 P. grayi individuals covering both color morphotypes were assembled from RNA-seq data, using samples collected at three sites in southern (Sagres and Tavira) and western (Cape Espichel) Portugal. The complete circular mitogenome is 18,668 bp in length, has an A + T-rich base composition (62.5%) and contains the 17 genes typically found in Octocorallia: 14 protein-coding genes (atp6, atp8, cob, cox1-3, mt-mutS, nad1-6, and nad4L), the small and large subunit rRNAs (rns and rnl), and one transfer RNA (trnM). The mitogenomes were nearly identical for all specimens, though we identified a noteworthy polymorphism (two SNPs 9 bp apart) in the mt-mutS of one purple individual that is shared with the sister species P. clavata. The mitogenomes of the two species have a pairwise sequence identity of 99.0%, with nad6 and mt-mutS having the highest rates of non-synonymous substitutions.

10.
Microorganisms ; 10(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36296266

RESUMO

The fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% "amplicon sequence variants", ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.

11.
Mol Ecol ; 31(18): 4797-4817, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869812

RESUMO

Geologically recent radiations can shed light on speciation processes, but incomplete lineage sorting and introgressive gene flow render accurate evolutionary reconstruction and interpretation challenging. Independently evolving metapopulations of low dispersal taxa may provide an additional level of phylogeographic information, given sufficiently broad sampling and genome-wide sequencing. Evolution in the marine brown algal genus Fucus in the south-eastern North Atlantic was shaped by Quaternary climate-driven range shifts. Over this timescale, divergence and speciation occurred against a background of expansion-contraction cycles from multiple refugia, together with mating-system shifts from outcrossing (dioecy) to selfing hermaphroditism. We tested the hypothesis that peripheral isolation of range edge (dioecious) F. vesiculosus led to parapatric speciation and radiation of hermaphrodite lineages. Species tree methods using 876 single-copy nuclear genes and extensive geographic coverage produced conflicting topologies with respect to geographic clades of F. vesiculosus. All methods, however, revealed a new and early diverging hermaphrodite species, Fucus macroguiryi sp. nov. Both the multispecies coalescent and polymorphism-aware models (in contrast to concatenation) support sequential paraphyly in F. vesiculosus resulting from distinct evolutionary processes. Our results support (1) peripheral isolation of the southern F. vesiculosus clade prior to parapatric speciation and radiation of hermaphrodite lineages-a "low-latitude species pump". (2) Directional introgressive gene flow into F. vesiculosus around the present-day secondary contact zone (sympatric-allopatric boundary) between dioecious/hermaphrodite lineages as hermaphrodites expanded northwards, supported by concordance analysis and statistical tests of introgression. (3) Species boundaries in the extensive sympatric range are probably maintained by reproductive system (selfing in hermaphrodites) and reinforcement.


Assuntos
Fucus , Fluxo Gênico , Fucus/genética , Filogenia , Filogeografia , Reprodução/genética , Simpatria
12.
Front Plant Sci ; 13: 818368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283864

RESUMO

The genus Porphyra sensu lato (Bangiaceae, Rhodophyta), an important seaweed grown in aquaculture, is the most genetically diverse group of the Class Bangiophyceae, but has poorly understood genetic variability linked to complex evolutionary processes. Genetic studies in the last decades have largely focused on resolving gene phylogenies; however, there is little information on historical population biogeography, structure and gene flow in the Bangiaceae, probably due to their cryptic nature, chimerism and polyploidy, which render analyses challenging. This study aims to understand biogeographic population structure in the two abundant Porphyra species in the Northeast Atlantic: Porphyra dioica (a dioecious annual) and Porphyra linearis (protandrous hermaphroditic winter annual), occupying distinct niches (seasonality and position on the shore). Here, we present a large-scale biogeographic genetic analysis across their distribution in the Northeast Atlantic, using 10 microsatellites and cpDNA as genetic markers and integrating chimerism and polyploidy, including simulations considering alleles derived from different ploidy levels and/or from different genotypes within the chimeric blade. For P. linearis, both markers revealed strong genetic differentiation of north-central eastern Atlantic populations (from Iceland to the Basque region of Northeast Iberia) vs. southern populations (Galicia in Northwest Iberia, and Portugal), with higher genetic diversity in the south vs. a northern homogenous low diversity. For. P. dioica, microsatellite analyses also revealed two genetic regions, but with weaker differentiation, and cpDNA revealed little structure with all the haplotypes mixed across its distribution. The southern cluster in P. linearis also included introgressed individuals with cpDNA from P. dioica and a winter form of P. dioica occurred spatially intermixed with P. linearis. This third entity had a similar morphology and seasonality as P. linearis but genomes (either nuclear or chloroplast) from P. dioica. We hypothesize a northward colonization from southern Europe (where the ancestral populations reside and host most of the gene pool of these species). In P. linearis recently established populations colonized the north resulting in homogeneous low diversity, whereas for P. dioica the signature of this colonization is not as obvious due to hypothetical higher gene flow among populations, possibly linked to its reproductive biology and annual life history.

13.
Life (Basel) ; 11(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34833075

RESUMO

Macroalgae play an intricate role in microbial-mediated coral reef degradation processes due to the release of dissolved nutrients. However, temporal variabilities of macroalgal surface biofilms and their implication on the wider reef system remain poorly characterized. Here, we study the microbial biofilm of the dominant reef macroalgae Sargassum over a period of one year at an inshore Great Barrier Reef site (Magnetic Island, Australia). Monthly sampling of the Sargassum biofilm links the temporal taxonomic and putative functional metabolic microbiome changes, examined using 16S rRNA gene amplicon and metagenomic sequencing, to the pronounced growth-reproduction-senescence cycle of the host. Overall, the macroalgal biofilm was dominated by the heterotrophic phyla Firmicutes (35% ± 5.9% SD) and Bacteroidetes (12% ± 0.6% SD); their relative abundance ratio shifted significantly along the annual growth-reproduction-senescence cycle of Sargassum. For example, Firmicutes were 1.7 to 3.9 times more abundant during host growth and reproduction cycles than Bacteroidetes. Both phyla varied in their carbohydrate degradation capabilities; hence, temporal fluctuations in the carbohydrate availability are potentially linked to the observed shift. Dominant heterotrophic macroalgal biofilm members, such as Firmicutes and Bacteroidetes, are implicated in exacerbating or ameliorating the release of dissolved nutrients into the ambient environment, though their contribution to microbial-mediated reef degradation processes remains to be determined.

14.
Front Microbiol ; 12: 653998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434172

RESUMO

Invasive plants, including marine macrophytes, are one of the most important threats to biodiversity by displacing native species and organisms depending on them. Invasion success is dependent on interactions among living organisms, but their study has been mostly limited to negative interactions while positive interactions are mostly underlooked. Recent studies suggested that microorganisms associated with eukaryotic hosts may play a determinant role in the invasion process. Along with the knowledge of their structure, taxonomic composition, and potential functional profile, understanding how bacterial communities are associated with the invasive species and the threatened natives (species-specific/environmentally shaped/tissue-specific) can give us a holistic insight into the invasion mechanisms. Here, we aimed to compare the bacterial communities associated with leaves and roots of two native Caribbean seagrasses (Halodule wrightii and Thalassia testudinum) with those of the successful invader Halophila stipulacea, in the Caribbean island Curaçao, using 16S rRNA gene amplicon sequencing and functional prediction. Invasive seagrass microbiomes were more diverse and included three times more species-specific core OTUs than the natives. Associated bacterial communities were seagrass-specific, with higher similarities between natives than between invasive and native seagrasses for both communities associated with leaves and roots, despite their strong tissue differentiation. However, with a higher number of OTUs in common, the core community (i.e., OTUs occurring in at least 80% of the samples) of the native H. wrightii was more similar to that of the invader H. stipulacea than T. testudinum, which could reflect more similar essential needs (e.g., nutritional, adaptive, and physiological) between native and invasive, in contrast to the two natives that might share more environment-related OTUs. Relative to native seagrass species, the invasive H. stipulacea was enriched in halotolerant bacterial genera with plant growth-promoting properties (like Halomonas sp. and Lysinibacillus sp.) and other potential beneficial effects for hosts (e.g., heavy metal detoxifiers and quorum sensing inhibitors). Predicted functional profiles also revealed some advantageous traits on the invasive species such as detoxification pathways, protection against pathogens, and stress tolerance. Despite the predictive nature of our findings concerning the functional potential of the bacteria, this investigation provides novel and important insights into native vs. invasive seagrasses microbiome. We demonstrated that the bacterial community associated with the invasive seagrass H. stipulacea is different from native seagrasses, including some potentially beneficial bacteria, suggesting the importance of considering the microbiome dynamics as a possible and important influencing factor in the colonization of non-indigenous species. We suggest further comparison of H. stipulacea microbiome from its native range with that from both the Mediterranean and Caribbean habitats where this species has a contrasting invasion success. Also, our new findings open doors to a more in-depth investigation combining meta-omics with bacterial manipulation experiments in order to confirm any functional advantage in the microbiome of this invasive seagrass.

15.
Evol Appl ; 14(7): 1867-1879, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295369

RESUMO

Glaciation-induced environmental changes during the last glacial maximum (LGM) have strongly influenced species' distributions and genetic diversity patterns in the northern high latitudes. However, these effects have seldom been assessed on sessile species in the Northwest Pacific. Herein, we chose the brown alga Sargassum thunbergii to test this hypothesis, by comparing present population genetic variability with inferred geographical range shifts from the LGM to the present, estimated with species distribution modelling (SDM). Projections for contrasting scenarios of future climate change were also developed to anticipate genetic diversity losses at regional scales. Results showed that S. thunbergii harbours strikingly rich genetic diversity and multiple divergent lineages in the centre-northern range of its distribution, in contrast with a poorer genetically distinct lineage in the southern range. SDM hindcasted refugial persistence in the southern range during the LGM as well as post-LGM expansion of 18 degrees of latitude northward. Approximate Bayesian computation (ABC) analysis further suggested that the multiple divergent lineages in the centre-northern range limit stem from post-LGM colonization from the southern survived lineage. This suggests divergence due to demographic bottlenecks during range expansion and massive genetic diversity loss during post-LGM contraction in the south. The projected future range of S. thunbergii highlights the threat to unique gene pools that might be lost under global changes.

16.
Evol Appl ; 14(6): 1497-1518, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34178100

RESUMO

The health of the world's oceans is intrinsically linked to the biodiversity of the ecosystems they sustain. The importance of protecting and maintaining ocean biodiversity has been affirmed through the setting of the UN Sustainable Development Goal 14 to conserve and sustainably use the ocean for society's continuing needs. The decade beginning 2021-2030 has additionally been declared as the UN Decade of Ocean Science for Sustainable Development. This program aims to maximize the benefits of ocean science to the management, conservation, and sustainable development of the marine environment by facilitating communication and cooperation at the science-policy interface. A central principle of the program is the conservation of species and ecosystem components of biodiversity. However, a significant omission from the draft version of the Decade of Ocean Science Implementation Plan is the acknowledgment of the importance of monitoring and maintaining genetic biodiversity within species. In this paper, we emphasize the importance of genetic diversity to adaptive capacity, evolutionary potential, community function, and resilience within populations, as well as highlighting some of the major threats to genetic diversity in the marine environment from direct human impacts and the effects of global climate change. We then highlight the significance of ocean genetic diversity to a diverse range of socioeconomic factors in the marine environment, including marine industries, welfare and leisure pursuits, coastal communities, and wider society. Genetic biodiversity in the ocean, and its monitoring and maintenance, is then discussed with respect to its integral role in the successful realization of the 2030 vision for the Decade of Ocean Science. Finally, we suggest how ocean genetic diversity might be better integrated into biodiversity management practices through the continued interaction between environmental managers and scientists, as well as through key leverage points in industry requirements for Blue Capital financing and social responsibility.

17.
J Phycol ; 57(6): 1681-1698, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34176151

RESUMO

Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.


Assuntos
Fucus , Microbiota , North Carolina , Filogenia , Filogeografia
18.
J Phycol ; 57(3): 711-725, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33583038

RESUMO

Inbreeding, the mating between genetically related individuals, often results in reduced survival and fecundity of offspring, relative to outcrossing. Yet, high inbreeding rates are commonly observed in seaweeds, suggesting compensatory reproductive traits may affect the costs and benefits of the mating system. We experimentally manipulated inbreeding levels in controlled crossing experiments, using gametophytes from 19 populations of Macrocystis pyrifera along its Eastern Pacific coastal distribution (EPC). The objective was to investigate the effects of male-female kinship on female fecundity and fertility, to estimate inbreeding depression in the F1 progeny, and to assess the variability of these effects among different regions and habitats of the EPC. Results revealed that the presence and kinship of males had a significant effect on fecundity and fertility of female gametophytes. Females left alone or in the presence of sibling males express the highest gametophyte size, number, and size of oogonia, suggesting they were able to sense the presence and the identity of their mates before gamete contact. The opposite trend was observed for the production of embryos per female gametes, indicating higher costs of selfing and parthenogenesis than outcrossing on fertility. However, the increased fecundity compensated for the reduced fertility, leading to a stable overall reproductive output. Inbreeding also affected morphological traits of juvenile sporophytes, but not their heatwave tolerance. The male-female kinship effect was stronger in high-latitude populations, suggesting that females from low-latitude marginal populations might have evolved to mate with any male gamete to guarantee reproductive success.


Assuntos
Macrocystis , Células Germinativas Vegetais , Endogamia , Reprodução
20.
Sci Rep ; 10(1): 19219, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154466

RESUMO

The widespread decline of canopy-forming macroalgal assemblages has been documented in many regions during the last decades. This pattern is often followed by the replacement of structurally complex algal canopies by more simplified habitats (e.g., turfs or sea urchin barren grounds). Against all odds, the fucoid Treptacantha elegans, a large Mediterranean brown macroalga, broadened its depth range to deeper and exposed environments and displayed an unexpected range expansion along the northern coast of Catalonia over the last two decades. Here, we reconstruct the spread of T. elegans in time and space and unravel ecological and demographic traits such as population dynamics and genetic patterns to provide a comprehensive and integrated view of the current status and geographical expansion for this species. Fast-growing dynamics, early fertile maturity, and high turnover rate are the main competitive advantages that allow the exposed populations of T. elegans to colonize available substrata and maintain dense and patchy populations. We also provided evidence that the deeper and exposed populations of T. elegans constitute a single group across the Catalan coast, with little genetic differentiation among populations. This seems to support the hypothesis of a unique source of spread in the last decades from the Medes Islands No-Take Zone towards both southern and northern waters.


Assuntos
Ecossistema , Variação Genética , Alga Marinha/genética , Mar Mediterrâneo , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...