Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SSM Popul Health ; 23: 101431, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37287717

RESUMO

Empirical studies on the impact of weather and policy interventions on Covid-19 infections have dedicated little attention to the mediation role of social activity. In this study, we combine mobile locations, weather, and COVID-19 data in a two-way fixed effects mediation model to estimate the impact of weather and policy interventions on the COVID-19 infection rate in the US before the availability of vaccines, disentangling their direct impact from the part of the effect that is mediated by the endogenous response of social activity. We show that, while temperature reduces viral infectiousness, it also increases the amount of time individuals spend out of home, which instead favours the spread of the virus. This second channel substantially attenuates the beneficial effect of temperature in curbing the spread of the virus, offsetting one-third of the potential seasonal fluctuations in the reproduction rate. The mediation role of social activity is particularly pronounced when viral incidence is low, and completely offsets the beneficial effect of temperature. Despite being significant predictors of social activity, wind speed and precipitation do not induce sufficient variation to affect infections. Our estimates also suggest that school closures and lockdowns are effective in reducing infections. We employ our estimates to quantify the seasonal variation in the reproduction rate stemming from weather seasonality in the US.

2.
Cereb Cortex ; 33(6): 2517-2538, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35709758

RESUMO

Despite extensive research, the functional architecture of the subregions of the dorsal posterior parietal cortex (PPC) involved in sensorimotor processing is far from clear. Here, we draw a thorough picture of the large-scale functional organization of the PPC to disentangle the fronto-parietal networks mediating visuomotor functions. To this aim, we reanalyzed available human functional magnetic resonance imaging data collected during the execution of saccades, hand, and foot pointing, and we combined individual surface-based activation, resting-state functional connectivity, and effective connectivity analyses. We described a functional distinction between a more lateral region in the posterior intraparietal sulcus (lpIPS), preferring saccades over pointing and coupled with the frontal eye fields (FEF) at rest, and a more medial portion (mpIPS) intrinsically correlated to the dorsal premotor cortex (PMd). Dynamic causal modeling revealed feedforward-feedback loops linking lpIPS with FEF during saccades and mpIPS with PMd during pointing, with substantial differences between hand and foot. Despite an intrinsic specialization of the action-specific fronto-parietal networks, our study reveals that their functioning is finely regulated according to the effector to be used, being the dynamic interactions within those networks differently modulated when carrying out a similar movement (i.e. pointing) but with distinct effectors (i.e. hand and foot).


Assuntos
Mapeamento Encefálico , Córtex Motor , Humanos , Mapeamento Encefálico/métodos , Córtex Motor/fisiologia , Movimentos Sacádicos , Lobo Parietal/fisiologia , Movimento/fisiologia , Imageamento por Ressonância Magnética
3.
Cortex ; 137: 74-92, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607346

RESUMO

During locomotion, leg movements define the direction of walking (forward or backward) and the path one is taking (straight or curved). These aspects of locomotion produce characteristic visual motion patterns during movement. Here, we tested whether cortical regions responding to either egomotion-compatible visual motion, or leg movements, or both, are sensitive to these locomotion-relevant aspects of visual motion. We compared a curved path (typically the visual feedback of a changing direction of movement in the environment) to a linear path for simulated forward and backward motion in an event-related fMRI experiment. We used an individual surface-based approach and two functional localizers to define (1) six egomotion-related areas (V6+, V3A, intraparietal motion area [IPSmot], cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) using the flow field stimulus and (2) three leg-related cortical regions (human PEc [hPEc], human PE [hPE] and primary somatosensory cortex [S-I]) using a somatomotor task. Then, we extracted the response from all these regions with respect to the main event-related fMRI experiment, consisting of passive viewing of an optic flow stimulus, simulating a forward or backward direction of self-motion in either linear or curved path. Results showed that some regions have a significant preference for the curved path motion (hPEc, hPE, S-I, IPSmot) or a preference for the forward motion (V3A), while other regions have both a significant preference for the curved path motion and for the forward compared to backward motion (V6+, CSv, pCi). We did not find any significant effects of the present stimuli in PIC. Since controlling locomotion mainly means controlling changes of walking direction in the environment during forward self-motion, such a differential functional profile among these cortical regions suggests that they play a differentiated role in the visual guidance of locomotion.


Assuntos
Percepção de Movimento , Fluxo Óptico , Humanos , Locomoção , Imageamento por Ressonância Magnética , Movimento (Física) , Estimulação Luminosa
5.
Hum Brain Mapp ; 41(4): 1084-1111, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31713304

RESUMO

To plan movements toward objects our brain must recognize whether retinal displacement is due to self-motion and/or to object-motion. Here, we aimed to test whether motion areas are able to segregate these types of motion. We combined an event-related functional magnetic resonance imaging experiment, brain mapping techniques, and wide-field stimulation to study the responsivity of motion-sensitive areas to pure and combined self- and object-motion conditions during virtual movies of a train running within a realistic landscape. We observed a selective response in MT to the pure object-motion condition, and in medial (PEc, pCi, CSv, and CMA) and lateral (PIC and LOR) areas to the pure self-motion condition. Some other regions (like V6) responded more to complex visual stimulation where both object- and self-motion were present. Among all, we found that some motion regions (V3A, LOR, MT, V6, and IPSmot) could extract object-motion information from the overall motion, recognizing the real movement of the train even when the images remain still (on the screen), or moved, because of self-movements. We propose that these motion areas might be good candidates for the "flow parsing mechanism," that is the capability to extract object-motion information from retinal motion signals by subtracting out the optic flow components.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Cinestesia/fisiologia , Percepção de Movimento/fisiologia , Rede Nervosa/fisiologia , Fluxo Óptico/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Realidade Virtual , Adulto Jovem
6.
Neuroimage ; 202: 116092, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31408715

RESUMO

The cortical area PEc is anatomically and functionally well-defined in macaque, but it is unknown whether it has a counterpart in human. Since we know that macaque PEc, but not the nearby posterior regions, hosts a lower limb representation, in an attempt to recognize a possible human PEc we looked for the existence of leg representations in the human parietal cortex using individual cortical surface-based analysis, task-evoked paradigms and resting-state functional connectivity. fMRI images were acquired while thirty-one participants performed long-range leg movements through an in-house MRI-compatible set-up. We revealed the existence of multiple leg representations in the human dorsomedial parietal cortex, here defined as S-I (somatosensory-I), hPE (human PE, in the postcentral sulcus), and hPEc (human PEc, in the anterior precuneus). Among the three "leg" regions, hPEc had a unique functional profile, in that it was the only one responding to both arm and leg movements, to both hand-pointing and foot pointing movements, and to flow field visual stimulation, very similar to macaque area PEc. In addition, hPEc showed functional connections with the somatomotor regions hosting a lower limb representation, again as in macaque area PEc. Therefore, based on similarity in brain position, functional organization, cortical connections, and relationship with the neighboring areas, we propose that this cortical region is the human homologue of macaque area PEc.


Assuntos
Perna (Membro)/inervação , Lobo Parietal/anatomia & histologia , Adulto , Animais , Mapeamento Encefálico , Feminino , Humanos , Macaca , Imageamento por Ressonância Magnética , Masculino
7.
Hum Brain Mapp ; 40(11): 3174-3191, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30924264

RESUMO

Monkey neurophysiology and human neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates a cortical network of temporal, parietal, insular, and cingulate visual motion regions. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by active lower limb movements, and hence are likely involved in guiding human locomotion. To this aim, we used a combined approach of task-evoked activity and resting-state functional connectivity by fMRI. We localized a set of six egomotion-responsive visual areas (V6+, V3A, intraparietal motion/ventral intraparietal [IPSmot/VIP], cingulate sulcus visual area [CSv], posterior cingulate sulcus area [pCi], posterior insular cortex [PIC]) by using optic flow. We tested their response to a motor task implying long-range active leg movements. Results revealed that, among these visually defined areas, CSv, pCi, and PIC responded to leg movements (visuomotor areas), while V6+, V3A, and IPSmot/VIP did not (visual areas). Functional connectivity analysis showed that visuomotor areas are connected to the cingulate motor areas, the supplementary motor area, and notably to the medial portion of the somatosensory cortex, which represents legs and feet. We suggest that CSv, pCi, and PIC perform the visual analysis of egomotion-like signals to provide sensory information to the motor system with the aim of guiding locomotion.


Assuntos
Giro do Cíngulo/diagnóstico por imagem , Perna (Membro)/fisiologia , Movimento/fisiologia , Fluxo Óptico/fisiologia , Córtex Visual/diagnóstico por imagem , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...