Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Front Plant Sci ; 14: 1245362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964999

RESUMO

Introduction: Climate change poses significant challenges to agriculture, impacting crop yields and necessitating adaptive strategies in breeding programs. This study investigates the genetic yield progress of wheat varieties in Catalonia, Spain, from 2007 to 2021, and examines the relationship between genetic yield and climate-related factors, such as temperature. Understanding these dynamics is crucial for ensuring the resilience of wheat crops in the face of changing environmental conditions. Methods: Genetic yield progress was assessed using a linear regression function, comparing the average yield changes of newly released wheat varieties to benchmark varieties. Additionally, a quadratic function was employed to model genetic yield progress in winter wheat (WW). The study also analyzed correlations between genetic yield (GY) and normalized values of hectoliter weight (HLW) and the number of grains (NG) for both spring wheat (SW) and WW. Weather data were used to confirm climate change impacts on temperature and its effects on wheat growth and development. Results: The study found that genetic yield was stagnant for SW but increased linearly by 1.31% per year for WW. However, the quadratic function indicated a possible plateau in WW genetic yield progress in recent years. Positive correlations were observed between GY and normalized values of HLW and NG for both SW and WW. Climate change was evident in Catalonia, with temperatures increasing at a rate of 0.050 °C per year. This rise in temperature had detrimental effects on days to heading (DH) and HLW, with reductions observed in both SW and WW for each °C increase in annual minimum and average temperature. Discussion: The findings highlighted the urgent need to address the impact of climate change on wheat cultivation. The stagnation of genetic yield in SW and the potential plateau in WW genetic yield progress call for adaptive measures. Breeding programs should prioritize phenological adjustments, particularly sowing date optimization, to align with the most favorable months of the year. Moreover, efforts should be made to enhance HLW and the number of grains per unit area in new wheat varieties to counteract the negative effects of rising temperatures. This research underscores the importance of ongoing monitoring and adaptation in agricultural practices to ensure yield resilience in the context of a changing climate.

2.
Inorg Chem ; 62(46): 18804-18808, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37943078

RESUMO

The spin-lattice relaxation time has been studied trough alternating-current susceptometry and ultralow-frequency Raman spectroscopy in a family of silver(II)-derived molecular systems with spin 1/2 and formulas [AgII(m-CTH)(NO3)2] (1) and [AgII(m-CTH)(ClO4)2] (2), where CTH = meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The combination of both techniques demonstrates the occurrence of slow spin magnetic relaxation induced by spin-phonon interaction. The magnetic behavior of these silver(II)-derived systems opens the door to a new cation in the scarce family of S = 1/2 systems with slow relaxation of magnetization.

3.
PLoS Biol ; 21(8): e3002263, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647291

RESUMO

The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.


Assuntos
Saccharomycetales , Fosforilação , Anáfase , Separação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina
4.
Nucleic Acids Res ; 51(13): 6754-6769, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37309898

RESUMO

The Sirtuin family of NAD+-dependent enzymes plays an important role in maintaining genome stability upon stress. Several mammalian Sirtuins have been linked directly or indirectly to the regulation of DNA damage during replication through Homologous recombination (HR). The role of one of them, SIRT1, is intriguing as it seems to have a general regulatory role in the DNA damage response (DDR) that has not yet been addressed. SIRT1-deficient cells show impaired DDR reflected in a decrease in repair capacity, increased genome instability and decreased levels of γH2AX. Here we unveil a close functional antagonism between SIRT1 and the PP4 phosphatase multiprotein complex in the regulation of the DDR. Upon DNA damage, SIRT1 interacts specifically with the catalytical subunit PP4c and promotes its inhibition by deacetylating the WH1 domain of the regulatory subunits PP4R3α/ß. This in turn regulates γH2AX and RPA2 phosphorylation, two key events in the signaling of DNA damage and repair by HR. We propose a mechanism whereby during stress, SIRT1 signaling ensures a global control of DNA damage signaling through PP4.


Assuntos
Dano ao DNA , Sirtuína 1 , Animais , Humanos , Mamíferos/metabolismo , Monoéster Fosfórico Hidrolases , Fosforilação , Transdução de Sinais , Sirtuína 1/metabolismo
5.
Mol Cancer ; 22(1): 83, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173708

RESUMO

BACKGROUND: RNA modifications are important regulators of transcript activity and an increasingly emerging body of data suggests that the epitranscriptome and its associated enzymes are altered in human tumors. METHODS: Combining data mining and conventional experimental procedures, NSUN7 methylation and expression status was assessed in liver cancer cell lines and primary tumors. Loss-of-function and transfection-mediated recovery experiments coupled with RNA bisulfite sequencing and proteomics determined the activity of NSUN7 in downstream targets and drug sensitivity. RESULTS: In this study, the initial screening for genetic and epigenetic defects of 5-methylcytosine RNA methyltransferases in transformed cell lines, identified that the NOL1/NOP2/Sun domain family member 7 (NSUN7) undergoes promoter CpG island hypermethylation-associated with transcriptional silencing in a cancer-specific manner. NSUN7 epigenetic inactivation was common in liver malignant cells and we coupled bisulfite conversion of cellular RNA with next-generation sequencing (bsRNA-seq) to find the RNA targets of this poorly characterized putative RNA methyltransferase. Using knock-out and restoration-of-function models, we observed that the mRNA of the coiled-coil domain containing 9B (CCDC9B) gene required NSUN7-mediated methylation for transcript stability. Most importantly, proteomic analyses determined that CCDC9B loss impaired protein levels of its partner, the MYC-regulator Influenza Virus NS1A Binding Protein (IVNS1ABP), creating sensitivity to bromodomain inhibitors in liver cancer cells exhibiting NSUN7 epigenetic silencing. The DNA methylation-associated loss of NSUN7 was also observed in primary liver tumors where it was associated with poor overall survival. Interestingly, NSUN7 unmethylated status was enriched in the immune active subclass of liver tumors. CONCLUSION: The 5-methylcytosine RNA methyltransferase NSUN7 undergoes epigenetic inactivation in liver cancer that prevents correct mRNA methylation. Furthermore, NSUN7 DNA methylation-associated silencing is associated with clinical outcome and distinct therapeutic vulnerability.


Assuntos
Neoplasias Hepáticas , Metiltransferases , Humanos , 5-Metilcitosina , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética
6.
Mol Cell Proteomics ; 22(6): 100547, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059366

RESUMO

Basal cell carcinomas (BCCs) and cutaneous squamous cell carcinomas (SCCs) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KCs). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the tumor interstitial fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing seven BCCs, 16 SCCs, and four normal skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF proteins that could explain the different metastatic behavior in both KCs. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin-1. Previous studies found their upregulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KCs provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/metabolismo , Líquido Extracelular/metabolismo , NF-kappa B/metabolismo , Proteômica , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/metabolismo , Queratinócitos/metabolismo , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral
7.
J Cachexia Sarcopenia Muscle ; 13(2): 1373-1384, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132805

RESUMO

BACKGROUND: The lack of dystrophin expression in Duchenne muscular dystrophy (DMD) induces muscle fibre and replacement by fibro-adipose tissue. Although the role of some growth factors in the process of fibrogenesis has been studied, pathways activated by PDGF-AA have not been described so far. Our aim was to study the molecular role of PDGF-AA in the fibrotic process of DMD. METHODS: Skeletal muscle fibro-adipogenic progenitor cells (FAPs) from three DMD treated with PDGF-AA at 50 ng/mL were analysed by quantitative mass spectrometry-based proteomics. Western-blot, immunofluorescence, and G-LISA were used to confirm the mass spectrometry results. We evaluated the effects of PDGF-AA on the activation of RhoA pathway using two inhibitors, C3-exoenzyme and fasudil. Cell proliferation and migration were determined by BrdU and migration assay. Actin reorganization and collagen synthesis were measured by phalloidin staining and Sircol assay, respectively. In an in vivo proof of concept study, we treated dba/2J-mdx mice with fasudil for 6 weeks. Muscle strength was assessed with the grip strength. Immunofluorescence and flow cytometry analyses were used to study fibrotic and inflammatory markers in muscle tissue. RESULTS: Mass spectrometry revealed that RhoA pathway proteins were up-regulated in treated compared with non-treated DMD FAPs (n = 3, mean age = 8 ± 1.15 years old). Validation of proteomic data showed that Arhgef2 expression was significantly increased in DMD muscles compared with healthy controls by a 7.7-fold increase (n = 2, mean age = 8 ± 1.14 years old). In vitro studies showed that RhoA/ROCK2 pathway was significantly activated by PDGF-AA (n = 3, 1.88-fold increase, P < 0.01) and both C3-exoenzyme and fasudil blocked that activation (n = 3, P < 0.05 and P < 0.001, respectively). The activation of RhoA pathway by PDGF-AA promoted a significant increase in proliferation and migration of FAPs (n = 3, P < 0.001), while C3-exoenzyme and fasudil inhibited FAPs proliferation at 72 h and migration at 48 and 72 h (n = 3, P < 0.001). In vivo studies showed that fasudil improved muscle function (n = 5 non-treated dba/2J-mdx and n = 6 treated dba/2J-mdx, 1.76-fold increase, P < 0.013), and histological studies demonstrated a 23% reduction of collagen-I expression area (n = 5 non-treated dba/2J-mdx and n = 6 treated dba/2J-mdx, P < 0.01). CONCLUSIONS: Our results suggest that PDGF-AA promotes the activation of RhoA pathway in FAPs from DMD patients. This pathway could be involved in FAPs activation promoting its proliferation, migration, and actin reorganization, which represents the beginning of the fibrotic process. The inhibition of RhoA pathway could be considered as a potential therapeutic target for muscle fibrosis in patients with muscular dystrophies.


Assuntos
Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Fator de Crescimento Derivado de Plaquetas , Proteômica , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/uso terapêutico , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/uso terapêutico
8.
Sci Rep ; 12(1): 2615, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173194

RESUMO

Zipf's law is a paradigm describing the importance of different elements in communication systems, especially in linguistics. Despite the complexity of the hierarchical structure of language, music has in some sense an even more complex structure, due to its multidimensional character (melody, harmony, rhythm, timbre, etc.). Thus, the relevance of Zipf's law in music is still an open question. Using discrete codewords representing harmonic content obtained from a large-scale analysis of classical composers, we show that a nearly universal Zipf-like law holds at a qualitative level. However, in an in-depth quantitative analysis, where we introduce the double power-law distribution as a new player in the classical debate between the superiority of Zipf's (power) law and that of the lognormal distribution, we conclude not only that universality does not hold, but also that there is not a unique probability distribution that best describes the usage of the different codewords by each composer.

9.
Nat Commun ; 12(1): 6060, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663789

RESUMO

The nucleotide analogue azacitidine (AZA) is currently the best treatment option for patients with high-risk myelodysplastic syndromes (MDS). However, only half of treated patients respond and of these almost all eventually relapse. New treatment options are urgently needed to improve the clinical management of these patients. Here, we perform a loss-of-function shRNA screen and identify the histone acetyl transferase and transcriptional co-activator, CREB binding protein (CBP), as a major regulator of AZA sensitivity. Compounds inhibiting the activity of CBP and the closely related p300 synergistically reduce viability of MDS-derived AML cell lines when combined with AZA. Importantly, this effect is specific for the RNA-dependent functions of AZA and not observed with the related compound decitabine that is only incorporated into DNA. The identification of immediate target genes leads us to the unexpected finding that the effect of CBP/p300 inhibition is mediated by globally down regulating protein synthesis.


Assuntos
Azacitidina/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Proteína de Ligação a CREB/genética , Biossíntese de Proteínas/efeitos dos fármacos , RNA/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Humanos , Leucemia Mielomonocítica Aguda
10.
Clin Cancer Res ; 27(23): 6591-6601, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34551904

RESUMO

PURPOSE: Despite the remarkable activity of BTK inhibitors (BTKi) in relapsed B-cell non-Hodgkin lymphoma (B-NHL), no clinically-relevant biomarker has been associated to these agents so far. The relevance of phosphoproteomic profiling for the early identification of BTKi responders remains underexplored. EXPERIMENTAL DESIGN: A set of six clinical samples from an ongoing phase I trial dosing patients with chronic lymphocytic leukemia (CLL) with TG-1701, a novel irreversible and highly specific BTKi, were characterized by phosphoproteomic and RNA sequencing (RNA-seq) analysis. The activity of TG-1701 was evaluated in a panel of 11 B-NHL cell lines and mouse xenografts, including two NF-κB- and BTKC481S-driven BTKi-resistant models. Biomarker validation and signal transduction analysis were conducted through real-time PCR, Western blot analysis, immunostaining, and gene knockout (KO) experiments. RESULTS: A nonsupervised, phosphoproteomic-based clustering did match the early clinical outcomes of patients with CLL and separated a group of "early-responders" from a group of "late-responders." This clustering was based on a selected list of 96 phosphosites with Ikaros-pSer442/445 as a potential biomarker for TG-1701 efficacy. TG-1701 treatment was further shown to blunt Ikaros gene signature, including YES1 and MYC, in early-responder patients as well as in BTKi-sensitive B-NHL cell lines and xenografts. In contrast, Ikaros nuclear activity and signaling remained unaffected by the drug in vitro and in vivo in late-responder patients and in BTKC481S, BTKKO, and noncanonical NF-κB models. CONCLUSIONS: These data validate phosphoproteomic as a valuable tool for the early detection of response to BTK inhibition in the clinic, and for the determination of drug mechanism of action.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma não Hodgkin , Tirosina Quinase da Agamaglobulinemia , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma não Hodgkin/tratamento farmacológico , Camundongos , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais
11.
Materials (Basel) ; 13(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963220

RESUMO

With the purpose to optimize the functional properties of Heusler alloys for their use in solid-state refrigeration, the characteristics of the martensitic and magnetic transitions undergone by Ni50Mn25-xGa25Cux (x = 3-11) alloys have been studied. The results reveal that, for a Cu content of x = 5.5-7.5, a magnetostructural transition between paramagnetic austenite and ferromagnetic martensite takes place. In such a case, magnetic field and stress act in the same sense, lowering the critical combined fields to induce the transformation; moreover, magnetocaloric and elastocaloric effects are both direct, suggesting the use of combined fields to improve the overall refrigeration capacity of the alloy. Within this range of compositions, the measured transformation entropy is increased owing to the magnetic contribution to entropy, showing a maximum at composition x = 6, in which the magnetization jump at the transformation is the largest of the set. At the same time, the temperature hysteresis of the transformation displays a minimum at x = 6, attributed to the optimal lattice compatibility between austenite and martensite. We show that, among this system, the optimal caloric performance is found for the x = 6 composition, which displays high isothermal entropy changes (-36 J·kg-1·K-1 under 5 T and -8.5 J·kg-1·K-1 under 50 MPa), suitable working temperature (300 K), and low thermal hysteresis (3 K).

12.
J Proteome Res ; 19(7): 2598-2605, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877049

RESUMO

The analysis of tumor interstitial fluid (TIF) composition is a valuable procedure to identify antimetastatic targets, and different laboratories have set up techniques for TIF isolation and proteomic analyses. However, those methods had never been compared in samples from the same tumor and patient. In this work, we compared the two most used methods, elution and centrifugation, in pieces of the same biopsy samples of cutaneous squamous cell carcinoma (cSCC). First, we established that high G-force (10 000g) was required to obtain TIF from cSCC by centrifugation. Second, we compared the centrifugation method with the elution method in pieces of three different cSCC tumors. We found that the mean protein intensities based in the number of peptide spectrum matches was significantly higher in the centrifuged samples than in the eluted samples. Regarding the robustness of the methods, we observed higher overlapping between both methods (77-80%) than among samples (50%). These results suggest that there exists an elevated consistence of TIF composition independently of the method used. However, we observed a 3-fold increase of extracellular proteins in nonoverlapped proteome obtained by centrifugation. We therefore conclude that centrifugation is the method of choice to study the proteome of TIF from cutaneous biopsies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Biópsia , Carcinoma de Células Escamosas/diagnóstico , Centrifugação , Líquido Extracelular , Humanos , Proteoma , Proteômica
13.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31428936

RESUMO

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioma/metabolismo , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Metiltransferases/genética , Camundongos Nus , Proteínas Musculares/genética , Transplante de Neoplasias , RNA Ribossômico 28S
14.
Sci Rep ; 9(1): 11016, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337770

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

15.
Sci Rep ; 9(1): 5076, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911078

RESUMO

The spiral antiferromagnetic phase of polycrystalline dysprosium between 140 K and the Néel temperature at 178 K and its domain wall (DW) dynamics were investigated using high-resolution ultrasonic spectroscopy. Two kinetic processes of quasi-static DW motion occur under non-isothermal and isothermal conditions. A "fast" process is proportional to the rate of the temperature change and results in a new category of anelastic phenomena: magnetic transient ultrasonic internal friction (IF). This IF, related to fast moving magnetic DWs, decays rapidly after interruptions of cooling/heating cycles. A second, "slow" kinetic process is seen as logarithmic IF relaxation under isothermal conditions. This second process is glass-like and results in memory and temperature chaos effects. Low-frequency thermal fluctuations of DWs, previously detected by X-ray photon correlation spectroscopy, are related to critical fluctuations with Brownian motion-like dynamics of DWs.

16.
Gigascience ; 7(5)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688323

RESUMO

Background: Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2ACdc55 phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2ACdc55 substrates have been identified. Here, we performed a quantitative mass spectrometry approach to reveal new substrates of PP2ACdc55 phosphatase and new PP2A-related processes in mitotic arrested cells. Results: We identified 62 statistically significant PP2ACdc55 substrates involved mainly in actin-cytoskeleton organization. In addition, we validated new PP2ACdc55 substrates such as Slk19 and Lte1, involved in early and late anaphase pathways, and Zeo1, a component of the cell wall integrity pathway. Finally, we constructed docking models of Cdc55 and its substrate Mob1. We found that the predominant interface on Cdc55 is mediated by a protruding loop consisting of residues 84-90, thus highlighting the relevance of these aminoacids for substrate interaction. Conclusions: We used phosphoproteomics of Cdc55-deficient cells to uncover new PP2ACdc55 substrates and functions in mitosis. As expected, several hyperphosphorylated proteins corresponded to Cdk1-dependent substrates, although other kinases' consensus motifs were also enriched in our dataset, suggesting that PP2ACdc55 counteracts and regulates other kinases distinct from Cdk1. Indeed, Pkc1 emerged as a novel node of PP2ACdc55 regulation, highlighting a major role of PP2ACdc55 in actin cytoskeleton and cytokinesis, gene ontology terms significantly enriched in the PP2ACdc55-dependent phosphoproteome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Marcação por Isótopo/métodos , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Citocinese , Endocitose , Ontologia Genética , Metáfase , Simulação de Acoplamento Molecular , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Proteína Fosfatase 2/química , Proteoma/metabolismo , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato
17.
Front Genet ; 9: 92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636770

RESUMO

Exosomes are biomolecular nanostructures released from cells. They carry specific biomolecular information and are mainly researched for their exquisite properties as a biomarker source and delivery system. We introduce exosomes in the context of other extracellular vesicles, describe their biophysical isolation and characterisation and discuss their biochemical profiling. Motivated by our interest in early-life nutrition and health, and corresponding studies enrolling lactating mothers and their infants, we zoom into exosomes derived from human breast milk. We argue that these should be more extensively studied at proteomic and micronutrient profiling level, because breast milk exosomes provide a more specific window into breast milk quality from an immunological (proteomics) and nutritional (micronutrient) perspective. Such enhanced breast milk exosome profiling would thereby complement and enrich the more classical whole breast milk analysis and is expected to deliver more functional insights than the rather descriptive analysis of human milk, or larger fractions thereof, such as milk fat globule membrane. We substantiate our arguments by a bioinformatic analysis of two published proteomic data sets of human breast milk exosomes.

18.
Brain Pathol ; 28(6): 965-985, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29396893

RESUMO

Aging-related tau astrogliopathy (ARTAG) is defined by the presence of two types of tau-bearing astrocytes: thorn-shaped astrocytes (TSAs) and granular/fuzzy astrocytes in the brain of old-aged individuals. The present study is focused on TSAs in rare forms of ARTAG with no neuronal tau pathology or restricted to entorhinal and transentorhinal cortices, to avoid bias from associated tauopathies. TSAs show 4Rtau phosphorylation at several specific sites and abnormal tau conformation, but they lack ubiquitin and they are not immunostained with tau-C3 antibodies which recognize truncated tau at Asp421. Astrocytes in ARTAG have atrophic processes, reduced glial fibrillary acidic protein (GFAP) and increased superoxide dismutase 2 (SOD2) immunoreactivity. Gel electrophoresis and western blotting of sarkosyl-insoluble fractions reveal a pattern of phospho-tau in ARTAG characterized by two bands of 68 and 64 kDa, and several middle bands between 35 and 50 kDa which differ from what is seen in AD. Phosphoproteomics of dissected vulnerable regions identifies an increase of phosphorylation marks in a large number of proteins in ARTAG compared with controls. GFAP, aquaporin 4, several serine-threonine kinases, microtubule associated proteins and other neuronal proteins are among the differentially phosphorylated proteins in ARTAG thus suggesting a hyper-phosphorylation background that affects several molecules, including many kinases and proteins from several cell compartments and various cell types. Finally, present results show for the first time that tau seeding is produced in neurons of the hippocampal complex, astrocytes, oligodendroglia and along fibers of the corpus callosum, fimbria and fornix following inoculation into the hippocampus of wild type mice of sarkosyl-insoluble fractions enriched in hyper-phosphorylated tau from selected ARTAG cases. These findings show astrocytes as crucial players of tau seeding in tauopathies.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Astrócitos/classificação , Corpo Caloso/metabolismo , Feminino , Fórnice/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Oligodendroglia/metabolismo , Fosforilação , Superóxido Dismutase/metabolismo , Substância Branca/metabolismo , Proteínas tau/química , Proteínas tau/classificação
19.
Sci Rep ; 7(1): 16994, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208936

RESUMO

Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.


Assuntos
Proteínas de Transporte/química , Dissulfetos/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Transporte da Membrana Mitocondrial/química , Dobramento de Proteína , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cobre , Dissulfetos/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica , Espalhamento a Baixo Ângulo , Homologia de Sequência , Difração de Raios X
20.
Materials (Basel) ; 10(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027942

RESUMO

Linear and non-linear internal friction and the effective Young's modulus of a Ni50.8Ti49.2 alloy have been studied after different heat treatments, affecting hydrogen content, over wide ranges of temperatures (13-300 K) and strain amplitudes (10-7-10-4) at frequencies near 90 kHz. It has been shown that the contamination of the alloy by hydrogen strongly affects the internal friction and Young's modulus of the martensitic phase. Presence of hydrogen gives rise to a non-relaxation internal friction maximum due to a competition of two different temperature-dependent processes. The temperature position and height of the maximum depend strongly on the hydrogen content. We conclude that many of the internal friction peaks, reported earlier for differently treated Ni-Ti-based alloys, had the same origin as the present maximum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...