Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2170: 79-99, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32797452

RESUMO

The advancement of transcriptomic studies in plant parasitic nematodes will greatly benefit from the development of single-nematode RNA-seq methods. Since many plant parasitic nematodes are obligate parasites, it is often difficult to efficiently obtain sufficient amounts of nematodes for transcriptomic studies. Here we have adapted SMART-Seq2 for single-nematode RNA-seq requiring only an individual nematode for a sample replicate. This protocol provides a detailed step-by-step procedure of the RNA-seq workflow starting from lysis of the nematode to quantification of transcripts using a user-friendly online platform.


Assuntos
Nematoides/genética , RNA-Seq/métodos , RNA/química , Animais , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
2.
G3 (Bethesda) ; 9(8): 2687-2697, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31113823

RESUMO

Entomopathogenic nematodes from the genus Steinernema are lethal insect parasites that quickly kill their insect hosts with the help of their symbiotic bacteria. Steinernema carpocapsae is one of the most studied entomopathogens due to its broad lethality to diverse insect species and its effective commercial use as a biological control agent for insect pests, as well as a genetic model for studying parasitism, pathogenesis, and symbiosis. In this study, we used long-reads from the Pacific Biosciences platform and BioNano Genomics Irys system to assemble the most complete genome of the S. carpocapsae ALL strain to date, comprising 84.5 Mb in 16 scaffolds, with an N50 of 7.36 Mb. The largest scaffold, with 20.9 Mb, was identified as chromosome X based on sex-specific genome sequencing. The high level of contiguity allowed us to characterize gene density, repeat content, and GC content. RNA-seq data from 17 developmental stages, spanning from embryo to adult, were used to predict 30,957 gene models. Using this improved genome, we performed a macrosyntenic analysis to Caenorhabditis elegans and Pristionchus pacificus and found S. carpocapsae's chromosome X to be primarily orthologous to C. elegans' and P. pacificus' chromosome II and IV. We also investigated the expansion of protein families and gene expression differences between adult male and female stage nematodes. This new genome and more accurate set of annotations provide a foundation for additional comparative genomic and gene expression studies within the Steinernema clade and across the Nematoda phylum.


Assuntos
Genoma , Genômica , Nematoides/genética , Cromossomo X , Animais , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Nematoides/classificação , Filogenia
3.
PLoS Pathog ; 15(5): e1007626, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31042778

RESUMO

Parasitic helminths release molecular effectors into their hosts and these effectors can directly damage host tissue and modulate host immunity. Excreted/secreted proteins (ESPs) are one category of parasite molecular effectors that are critical to their success within the host. However, most studies of nematode ESPs rely on in vitro stimulation or culture conditions to collect the ESPs, operating under the assumption that in vitro conditions mimic actual in vivo infection. This assumption is rarely if ever validated. Entomopathogenic nematodes (EPNs) are lethal parasites of insects that produce and release toxins into their insect hosts and are a powerful model parasite system. We compared transcriptional profiles of individual Steinernema feltiae nematodes at different time points of activation under in vitro and in vivo conditions and found that some but not all time points during in vitro parasite activation have similar transcriptional profiles with nematodes from in vivo infections. These findings highlight the importance of experimental validation of ESP collection conditions. Additionally, we found that a suite of genes in the neuropeptide pathway were downregulated as nematodes activated and infection progressed in vivo, suggesting that these genes are involved in host-seeking behavior and are less important during active infection. We then characterized the ESPs of activated S. feltiae infective juveniles (IJs) using mass spectrometry and identified 266 proteins that are released by these nematodes. In comparing these ESPs with those previously identified in activated S. carpocapsae IJs, we identified a core set of 52 proteins that are conserved and present in the ESPs of activated IJs of both species. These core venom proteins include both tissue-damaging and immune-modulating proteins, suggesting that the ESPs of these parasites include both a core set of effectors as well as a specialized set, more adapted to the particular hosts they infect.


Assuntos
Drosophila melanogaster/metabolismo , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Lepidópteros/metabolismo , Infecções por Rhabditida/metabolismo , Rabditídios/patogenicidade , Peçonhas/metabolismo , Animais , Drosophila melanogaster/parasitologia , Perfilação da Expressão Gênica , Proteínas de Helminto/genética , Lepidópteros/parasitologia , Infecções por Rhabditida/parasitologia , Simbiose
4.
Bio Protoc ; 8(4)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29564372

RESUMO

Most nematodes are small worms that lack enough RNA for regular RNA-seq protocols without pooling hundred to thousand of individuals. We have adapted the Smart-seq2 protocol in order to sequence the transcriptome of an individual worm. While developed for individual Steinernema carpocapsae and Caenorhabditis elegans larvae as well as embryos, the protocol should be adaptable for other nematode species and small invertebrates. In addition, we describe how to analyze the RNA-seq results using the Galaxy online environment. We expect that this method will be useful for the studying gene expression variances of individual nematodes in wild type and mutant backgrounds.

5.
Genome Biol Evol ; 9(10): 2681-2696, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048526

RESUMO

Cells express distinct sets of genes in a precise spatio-temporal manner during embryonic development. There is a wealth of information on the deterministic embryonic development of Caenorhabditis elegans, but much less is known about embryonic development in nematodes from other taxa, especially at the molecular level. We are interested in insect pathogenic nematodes from the genus Steinernema as models of parasitism and symbiosis as well as a satellite model for evolution in comparison to C. elegans. To explore gene expression differences across taxa, we sequenced the transcriptomes of single embryos of two Steinernema species and two Caenorhabditis species at 11 stages during embryonic development and found several interesting features. Our findings show that zygotic transcription initiates at different developmental stages in each species, with the Steinernema species initiating transcription earlier than Caenorhabditis. We found that ortholog expression conservation during development is higher at the later embryonic stages than at the earlier ones. The surprisingly higher conservation of orthologous gene expression in later embryonic stages strongly suggests a funnel-shaped model of embryonic developmental gene expression divergence in nematodes. This work provides novel insight into embryonic development across distantly related nematode species and demonstrates that the mechanisms controlling early development are more diverse than previously thought at the transcriptional level.


Assuntos
Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Caenorhabditis elegans/classificação , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Desenvolvimento Embrionário , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA