Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(23): eadn5175, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838138

RESUMO

Inheritance of epigenetic information is critical for maintaining cell identity. The transfer of parental histone H3-H4 tetramers, the primary carrier of epigenetic modifications on histone proteins, represents a crucial yet poorly understood step in the inheritance of epigenetic information. Here, we show the lagging strand DNA polymerase, Pol δ, interacts directly with H3-H4 and that the interaction between Pol δ and the sliding clamp PCNA regulates parental histone transfer to lagging strands, most likely independent of their roles in DNA synthesis. When combined, mutations at Pol δ and Mcm2 that compromise parental histone transfer result in a greater reduction in nucleosome occupancy at nascent chromatin than mutations in either alone. Last, PCNA contributes to nucleosome positioning on nascent chromatin. On the basis of these results, we suggest that the PCNA-Pol δ complex couples lagging strand DNA synthesis to parental H3-H4 transfer, facilitating epigenetic inheritance.


Assuntos
DNA Polimerase III , Replicação do DNA , Epigênese Genética , Histonas , Antígeno Nuclear de Célula em Proliferação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Histonas/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Nucleossomos/metabolismo , Nucleossomos/genética , DNA/metabolismo , Humanos , Ligação Proteica , Mutação , Cromatina/metabolismo , Cromatina/genética
2.
Sci Adv ; 8(18): eabm6246, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544640

RESUMO

During DNA replication, parental H3-H4 marked by H3K4me3 are transferred almost equally onto leading and lagging strands of DNA replication forks. Mutations in replicative helicase subunit, Mcm2 (Mcm2-3A), and leading strand DNA polymerase subunit, Dpb3 (dpb3∆), result in asymmetric distributions of H3K4me3 at replicating DNA strands immediately following DNA replication. Here, we show that mcm2-3A and dpb3∆ mutant cells markedly reduce the asymmetric distribution of H3K4me3 during cell cycle progression before mitosis. Furthermore, the restoration of a more symmetric distribution of H3K4me3 at replicating DNA strands in these mutant cells is driven by methylating nucleosomes without H3K4me3 by the H3K4 methyltransferase complex, COMPASS. Last, both gene transcription machinery and the binding of parental H3K4me3 by Spp1 subunit of the COMPASS complex help recruit the enzyme to chromatin for the restoration of the H3K4me3-marked state following DNA replication, shedding light on inheritance of this mark following DNA replication.


Assuntos
Código das Histonas , Histonas , DNA/genética , Replicação do DNA , Histonas/genética , Histonas/metabolismo
3.
EMBO J ; 41(5): e109783, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102600

RESUMO

Nucleosomes are disrupted transiently during eukaryotic transcription, yet the displaced histones must be retained and redeposited onto DNA, to preserve nucleosome density and associated histone modifications. Here, we show that the essential Spt5 processivity factor of RNA polymerase II (Pol II) plays a direct role in this process in budding yeast. Functional orthologues of eukaryotic Spt5 are present in archaea and bacteria, reflecting its universal role in RNA polymerase processivity. However, eukaryotic Spt5 is unique in having an acidic amino terminal tail (Spt5N) that is sandwiched between the downstream nucleosome and the upstream DNA that emerges from Pol II. We show that Spt5N contains a histone-binding motif that is required for viability in yeast cells and prevents loss of nucleosomal histones within actively transcribed regions. These findings indicate that eukaryotic Spt5 combines two essential activities, which together couple processive transcription to the efficient capture and re-deposition of nucleosomal histones.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Histonas/genética , RNA Polimerase II/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Nucleossomos/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34531325

RESUMO

In response to DNA replication stress, DNA replication checkpoint kinase Mec1 phosphorylates Mrc1, which in turn activates Rad53 to prevent the generation of deleterious single-stranded DNA, a process that remains poorly understood. We previously reported that lagging-strand DNA synthesis proceeds farther than leading strand in rad53-1 mutant cells defective in replication checkpoint under replication stress, resulting in the exposure of long stretches of the leading-strand templates. Here, we show that asymmetric DNA synthesis is also observed in mec1-100 and mrc1-AQ cells defective in replication checkpoint but, surprisingly, not in mrc1∆ cells in which both DNA replication and checkpoint functions of Mrc1 are missing. Furthermore, depletion of either Mrc1 or its partner, Tof1, suppresses the asymmetric DNA synthesis in rad53-1 mutant cells. Thus, the DNA replication checkpoint pathway couples leading- and lagging-strand DNA synthesis by attenuating the replication function of Mrc1-Tof1 under replication stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Replicação do DNA/genética , DNA Fúngico/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
6.
Nat Protoc ; 16(5): 2698-2721, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33911256

RESUMO

Faithful duplication of both genetic and epigenetic information is essential for all eukaryotic cells. DNA replication initiates from replication origins and proceeds bidirectionally but asymmetrically, with the leading strand being synthesized continuously and the lagging strand discontinuously as Okazaki fragments by distinct DNA polymerases. Unraveling the underlying mechanisms of chromatin replication at both strands is crucial to better understand DNA replication and its coupled processes, including nucleosome assembly, sister chromatid cohesion and DNA mismatch repair. Here we describe the enrichment and sequencing of protein-associated nascent DNA (eSPAN) method to analyze the enrichment of proteins of interest, including histones and their modifications at replicating chromatin in a strand-specific manner in mammalian cells. Briefly, cells are pulsed with the thymidine analog bromodeoxyuridine to label newly synthesized DNA. After cell permeabilization, the target proteins are sequentially bound by antibodies and protein A-fused transposase, which digests and tags genomic DNA of interest once activated by magnesium. The strand specificity is preserved through oligo-replacement. Finally, the resulting double-strand DNA is denatured and immunoprecipitated with antibodies against bromodeoxyuridine to enrich nascent DNA associated with proteins of interest. After PCR amplification and next-generation sequencing, the mapped reads are used to calculate the relative enrichment of the target proteins around replication origins. Compared with alternative methods, the eSPAN protocol is simple, cost-effective and sensitive, even in a relatively small number of mammalian cells. The whole procedures from cell collection to generation of sequencing-ready libraries can be completed in 2 days.


Assuntos
Cromatina/genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Análise de Sequência de DNA/métodos , Animais , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fatores de Tempo
7.
Sci Adv ; 6(35): eabb5820, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923642

RESUMO

How parental histones, the carriers of epigenetic modifications, are deposited onto replicating DNA remains poorly understood. Here, we describe the eSPAN method (enrichment and sequencing of protein-associated nascent DNA) in mouse embryonic stem (ES) cells and use it to detect histone deposition onto replicating DNA strands with a relatively small number of cells. We show that DNA polymerase α (Pol α), which synthesizes short primers for DNA synthesis, binds histone H3-H4 preferentially. A Pol α mutant defective in histone binding in vitro impairs the transfer of parental H3-H4 to lagging strands in both yeast and mouse ES cells. Last, dysregulation of both coding genes and noncoding endogenous retroviruses is detected in mutant ES cells defective in parental histone transfer. Together, we report an efficient eSPAN method for analysis of DNA replication-linked processes in mouse ES cells and reveal the mechanism of Pol α in parental histone transfer.


Assuntos
DNA Polimerase I , Histonas , Animais , DNA/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Replicação do DNA , Histonas/genética , Histonas/metabolismo , Camundongos , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética
8.
Mol Cell ; 72(1): 140-151.e3, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244834

RESUMO

Although essential for epigenetic inheritance, the transfer of parental histone (H3-H4)2 tetramers that contain epigenetic modifications to replicating DNA strands is poorly understood. Here, we show that the Mcm2-Ctf4-Polα axis facilitates the transfer of parental (H3-H4)2 tetramers to lagging-strand DNA at replication forks. Mutating the conserved histone-binding domain of the Mcm2 subunit of the CMG (Cdc45-MCM-GINS) DNA helicase, which translocates along the leading-strand template, results in a marked enrichment of parental (H3-H4)2 on leading strand, due to the impairment of the transfer of parental (H3-H4)2 to lagging strands. Similar effects are observed in Ctf4 and Polα primase mutants that disrupt the connection of the CMG helicase to Polα that resides on lagging-strand template. Our results support a model whereby parental (H3-H4)2 complexes displaced from nucleosomes by DNA unwinding at replication forks are transferred by the CMG-Ctf4-Polα complex to lagging-strand DNA for nucleosome assembly at the original location.


Assuntos
DNA Polimerase III/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Epigênese Genética , Histonas/genética , Complexos Multiproteicos/genética , Nucleossomos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética
9.
Science ; 361(6409): 1386-1389, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30115745

RESUMO

How parental histone (H3-H4)2 tetramers, the primary carriers of epigenetic modifications, are transferred onto leading and lagging strands of DNA replication forks for epigenetic inheritance remains elusive. Here we show that parental (H3-H4)2 tetramers are assembled into nucleosomes onto both leading and lagging strands, with a slight preference for lagging strands. The lagging-strand preference increases markedly in budding yeast cells lacking Dpb3 and Dpb4, two subunits of the leading strand DNA polymerase, Pol ε, owing to the impairment of parental (H3-H4)2 transfer to leading strands. Dpb3-Dpb4 binds H3-H4 in vitro and participates in the inheritance of heterochromatin. These results indicate that different proteins facilitate the transfer of parental (H3-H4)2 onto leading versus lagging strands and that Dbp3-Dpb4 plays an important role in this poorly understood process.


Assuntos
Replicação do DNA , Epigênese Genética , Histonas/metabolismo , Saccharomycetales/metabolismo , DNA/genética , DNA/metabolismo , DNA Polimerase II/genética , Deleção de Genes , Heterocromatina/química , Heterocromatina/metabolismo , Nucleossomos/metabolismo , Multimerização Proteica , Saccharomycetales/genética
10.
Cell ; 174(4): 818-830.e11, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057113

RESUMO

Rtt109 is a unique histone acetyltransferase acetylating histone H3 lysine 56 (H3K56), a modification critical for DNA replication-coupled nucleosome assembly and genome stability. In cells, histone chaperone Asf1 is essential for H3K56 acetylation, yet the mechanisms for H3K56 specificity and Asf1 requirement remain unknown. We have determined the crystal structure of the Rtt109-Asf1-H3-H4 complex and found that unwinding of histone H3 αN, where K56 is normally located, and stabilization of the very C-terminal ß strand of histone H4 by Asf1 are prerequisites for H3K56 acetylation. Unexpectedly, an interaction between Rtt109 and the central helix of histone H3 is also required. The observed multiprotein, multisite substrate recognition mechanism among histone modification enzymes provides mechanistic understandings of Rtt109 and Asf1 in H3K56 acetylation, as well as valuable insights into substrate recognition by histone modification enzymes in general.


Assuntos
Aspergillus fumigatus/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Acetilação , Sequência de Aminoácidos , Histona Acetiltransferases/química , Histonas/metabolismo , Lisina/química , Chaperonas Moleculares/química , Conformação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência , Especificidade por Substrato
11.
Trends Biochem Sci ; 43(2): 136-148, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29292063

RESUMO

During S phase, replicated DNA must be assembled into nucleosomes using both newly synthesized and parental histones in a process that is tightly coupled to DNA replication. This DNA replication-coupled process is regulated by multitude of histone chaperones as well as by histone-modifying enzymes. In recent years novel insights into nucleosome assembly of new H3-H4 tetramers have been gained through studies on the classical histone chaperone CAF-1 and the identification of novel factors involved in this process. Moreover, in vitro reconstitution of chromatin replication has shed light on nucleosome assembly of parental H3-H4, a process that remains elusive. Finally, recent studies have revealed that the replication-coupled nucleosome assembly is important for the determination and maintenance of cell fate in multicellular organisms.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Replicação do DNA , Epigênese Genética , Nucleossomos/genética , Nucleossomos/metabolismo , Animais , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Nucleossomos/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
Mol Plant Microbe Interact ; 30(5): 385-398, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28430017

RESUMO

Metal ions are essential elements for all living organisms. However, metals can be toxic when present in excess. In plants, metal homeostasis is partly achieved through the function of metal transporters, including the diverse natural resistance-associated macrophage proteins (NRAMP). Among them, the OsNramp6 gene encodes a previously uncharacterized member of the rice NRAMP family that undergoes alternative splicing to produce different NRAMP6 proteins. In this work, we determined the metal transport activity and biological role of the full-length and the shortest NRAMP6 proteins (l-NRAMP6 and s-NRAMP6, respectively). Both l-NRAMP6 and s-NRAMP6 are plasma membrane-localized proteins that function as iron and manganese transporters. The expression of l-Nramp6 and s-Nramp6 is regulated during infection with the fungal pathogen Magnaporthe oryzae, albeit with different kinetics. Rice plants grown under high iron supply show stronger induction of rice defense genes and enhanced resistance to M. oryzae infection. Also, loss of function of OsNramp6 results in enhanced resistance to M. oryzae, supporting the idea that OsNramp6 negatively regulates rice immunity. Furthermore, nramp6 plants showed reduced biomass, pointing to a role of OsNramp6 in plant growth. A better understanding of OsNramp6-mediated mechanisms underlying disease resistance in rice will help in developing appropriate strategies for crop protection.


Assuntos
Resistência à Doença , Ferro/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Biomassa , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Teste de Complementação Genética , Magnaporthe/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutação/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo
13.
Sci Rep ; 6: 32836, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27618952

RESUMO

The yeast Saccharomyces cerevisiae is employed as a model to study the cellular mechanisms of toxicity and defense against selenite, the most frequent environmental selenium form. We show that yeast cells lacking Aft2, a transcription factor that together with Aft1 regulates iron homeostasis, are highly sensitive to selenite but, in contrast to aft1 mutants, this is not rescued by iron supplementation. The absence of Aft2 strongly potentiates the transcriptional responses to selenite, particularly for DNA damage- and oxidative stress-responsive genes, and results in intracellular hyperaccumulation of selenium. Overexpression of PHO4, the transcriptional activator of the PHO regulon under low phosphate conditions, partially reverses sensitivity and hyperaccumulation of selenite in a way that requires the presence of Spl2, a Pho4-controlled protein responsible for post-transcriptional downregulation of the low-affinity phosphate transporters Pho87 and Pho90. SPL2 expression is strongly downregulated in aft2 cells, especially upon selenite treatment. Selenite hypersensitivity of aft2 cells is fully rescued by deletion of PHO90, suggesting a major role for Pho90 in selenite uptake. We propose that the absence of Aft2 leads to enhanced Pho90 function, involving both Spl2-dependent and independent events and resulting in selenite hyperaccumulation and toxicity.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Selenioso/toxicidade , Transativadores/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Estresse Oxidativo/genética , Proteínas de Transporte de Fosfato/biossíntese , Proteínas de Transporte de Fosfato/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Ácido Selenioso/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
BMC Genomics ; 17: 662, 2016 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-27544903

RESUMO

BACKGROUND: Exposure of the budding Saccharomyces cerevisiae to an alkaline environment produces a robust transcriptional response involving hundreds of genes. Part of this response is triggered by an almost immediate burst of calcium that activates the Ser/Thr protein phosphatase calcineurin. Activated calcineurin dephosphorylates the transcription factor (TF) Crz1, which moves to the nucleus and binds to calcineurin/Crz1 responsive gene promoters. In this work we present a genome-wide study of the binding of Crz1 to gene promoters in response to high pH stress. RESULTS: Environmental alkalinization promoted a time-dependent recruitment of Crz1 to 152 intergenic regions, the vast majority between 1 and 5 min upon stress onset. Positional evaluation of the genomic coordinates combined with existing transcriptional studies allowed identifying 140 genes likely responsive to Crz1 regulation. Gene Ontology analysis confirmed the relevant impact of calcineurin/Crz1 on a set of genes involved in glucose utilization, and uncovered novel targets, such as genes responsible for trehalose metabolism. We also identified over a dozen of genes encoding TFs that are likely under the control of Crz1, suggesting a possible mechanism for amplification of the signal at the transcription level. Further analysis of the binding sites allowed refining the consensus sequence for Crz1 binding to gene promoters and the effect of chromatin accessibility in the timing of Crz1 recruitment to promoters. CONCLUSIONS: The present work defines at the genomic-wide level the kinetics of binding of Crz1 to gene promoters in response to alkaline stress, confirms diverse previously known Crz1 targets and identifies many putative novel ones. Because of the relevance of calcineurin/Crz1 in signaling diverse stress conditions, our data will contribute to understand the transcriptional response in other circumstances that also involve calcium signaling, such as exposition to sexual pheromones or saline stress.


Assuntos
Calcineurina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA/métodos , Transdução de Sinais , Estresse Fisiológico
15.
PLoS One ; 11(6): e0158424, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362362

RESUMO

Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase.


Assuntos
Calcineurina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae , ATPase Trocadora de Sódio-Potássio/genética , Estresse Fisiológico/genética , Fatores de Transcrição/fisiologia , Transporte Ativo do Núcleo Celular/genética , Sítios de Ligação/genética , Calcineurina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Organismos Geneticamente Modificados , Regiões Promotoras Genéticas , Transporte Proteico , Elementos Reguladores de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/metabolismo
16.
Mol Microbiol ; 101(4): 671-87, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27169355

RESUMO

Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high-copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2-mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2-M arrest. Clb2-associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2-M cell cycle transition after activation of the CWI pathway.


Assuntos
Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Parede Celular/genética , Parede Celular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Genetics ; 202(1): 141-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546002

RESUMO

The Saccharomyces cerevisiae type 2C protein phosphatase Ptc1 is required for a wide variety of cellular functions, although only a few cellular targets have been identified. A genetic screen in search of mutations in protein kinase-encoding genes able to suppress multiple phenotypic traits caused by the ptc1 deletion yielded a single gene, MKK1, coding for a MAPK kinase (MAPKK) known to activate the cell-wall integrity (CWI) Slt2 MAPK. In contrast, mutation of the MKK1 paralog, MKK2, had a less significant effect. Deletion of MKK1 abolished the increased phosphorylation of Slt2 induced by the absence of Ptc1 both under basal and CWI pathway stimulatory conditions. We demonstrate that Ptc1 acts at the level of the MAPKKs of the CWI pathway, but only the Mkk1 kinase activity is essential for ptc1 mutants to display high Slt2 activation. We also show that Ptc1 is able to dephosphorylate Mkk1 in vitro. Our results reveal the preeminent role of Mkk1 in signaling through the CWI pathway and strongly suggest that hyperactivation of Slt2 caused by upregulation of Mkk1 is at the basis of most of the phenotypic defects associated with lack of Ptc1 function.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
18.
Microb Cell ; 2(6): 182-196, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28357292

RESUMO

Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products.

19.
Mol Cell Biol ; 34(24): 4420-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266663

RESUMO

The yeast Saccharomyces cerevisiae has two main high-affinity inorganic phosphate (Pi) transporters, Pho84 and Pho89, that are functionally relevant at acidic/neutral pH and alkaline pH, respectively. Upon Pi starvation, PHO84 and PHO89 are induced by the activation of the PHO regulon by the binding of the Pho4 transcription factor to specific promoter sequences. We show that PHO89 and PHO84 are induced by alkalinization of the medium with different kinetics and that the network controlling Pho89 expression in response to alkaline pH differs from that of other members of the PHO regulon. In addition to Pho4, the PHO89 promoter is regulated by the transcriptional activator Crz1 through the calcium-activated phosphatase calcineurin, and it is under the control of several repressors (Mig2, Nrg1, and Nrg2) coordinately regulated by the Snf1 protein kinase and the Rim101 transcription factor. This network mimics the one regulating expression of the Na(+)-ATPase gene ENA1, encoding a major determinant for Na(+) detoxification. Our data highlight a scenario in which the activities of Pho89 and Ena1 are functionally coordinated to sustain growth in an alkaline environment.


Assuntos
Regulação Fúngica da Expressão Gênica , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcineurina/metabolismo , Meios de Cultura/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Concentração de Íons de Hidrogênio , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Simportadores de Próton-Fosfato/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...