Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxins, v. 16, n. 2, 83, fev. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5266

RESUMO

Snake venoms have evolved in several families of Caenophidae, and their toxins have been assumed to be biochemical weapons with a role as a trophic adaptation. However, it remains unclear how venom contributes to the success of venomous species for adaptation to different environments. Here we compared the venoms from Bothrocophias hyoprora, Bothrops taeniatus, Bothrops bilineatus smaragdinus, Bothrops brazili, and Bothrops atrox collected in the Amazon Rainforest, aiming to understand the ecological and toxinological consequences of venom composition. Transcriptomic and proteomic analyses indicated that the venoms presented the same toxin groups characteristic from bothropoids, but with distinct isoforms with variable qualitative and quantitative abundances, contributing to distinct enzymatic and toxic effects. Despite the particularities of each venom, commercial Bothrops antivenom recognized the venom components and neutralized the lethality of all species. No clear features could be observed between venoms from arboreal and terrestrial habitats, nor in the dispersion of the species throughout the Amazon habitats, supporting the notion that venom composition may not shape the ecological or toxinological characteristics of these snake species and that other factors influence their foraging or dispersal in different ecological niches.

2.
Int J Biol Macromol, v. 253, n. 6, 127279, dez, 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5144

RESUMO

Snakebite envenomation is classified as a Neglected Tropical Disease. Bothrops jararaca venom induces kidney injury and coagulopathy. HF3, a hemorrhagic metalloproteinase of B. jararaca venom, participates in the envenomation pathogenesis. We evaluated the effects of HF3 in mouse kidney and blood plasma after injection in the thigh muscle, mimicking a snakebite. Transcriptomic analysis showed differential expression of 31 and 137 genes related to kidney pathology after 2 h and 6 h, respectively. However, only subtle changes were observed in kidney proteome, with differential abundance of 15 proteins after 6 h, including kidney injury markers. N-terminomic analysis of kidney proteins showed 420 proteinase-generated peptides compatible with meprin specificity, indicating activation of host proteinases. Plasma analysis revealed differential abundance of 90 and 219 proteins, respectively, after 2 h and 6 h, including coagulation-cascade and complement-system components, and creatine-kinase, whereas a semi-specific search of N-terminal peptides indicated activation of endogenous proteinases. HF3 promoted host reactions, altering the gene expression and the proteolytic profile of kidney tissue, and inducing plasma proteome imbalance driven by changes in abundance and proteolysis. The overall response of the mouse underscores the systemic action of a hemorrhagic toxin that transcends local tissue damage and is related to known venom-induced systemic effects.

3.
Amino Acids, v. 55, p. 1103-1119, jun. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4969

RESUMO

Hemorrhage induced by snake venom metalloproteases (SVMPs) results from proteolysis, capillary disruption, and blood extravasation. HF3, a potent SVMP of Bothrops jararaca, induces hemorrhage at pmol doses in the mouse skin. To gain insight into the hemorrhagic process, the main goal of this study was to analyze changes in the skin peptidome generated by injection of HF3, using approaches of mass spectrometry-based untargeted peptidomics. The results revealed that the sets of peptides found in the control and HF3-treated skin samples were distinct and derived from the cleavage of different proteins. Peptide bond cleavage site identification in the HF3-treated skin showed compatibility with trypsin-like serine proteases and cathepsins, suggesting the activation of host proteinases. Acetylated peptides, which originated from the cleavage at positions in the N-terminal region of proteins in both samples, were identified for the first time in the mouse skin peptidome. The number of peptides acetylated at the residue after the first Met residue, mostly Ser and Ala, was higher than that of peptides acetylated at the initial Met. Proteins cleaved in the hemorrhagic skin participate in cholesterol metabolism, PPAR signaling, and in the complement and coagulation cascades, indicating the impairment of these biological processes. The peptidomic analysis also indicated the emergence of peptides with potential biological activities, including pheromone, cell penetrating, quorum sensing, defense, and cell–cell communication in the mouse skin. Interestingly, peptides generated in the hemorrhagic skin promoted the inhibition of collagen-induced platelet aggregation and could act synergistically in the local tissue damage induced by HF3.

4.
Parasit Vectors ; 15(1): 99, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313982

RESUMO

BACKGROUND: Most cystic echinococcosis cases in Southern Brazil are caused by Echinococcus granulosus and Echinococcus ortleppi. Proteomic studies of helminths have increased our knowledge about the molecular survival strategies that are used by parasites. Here, we surveyed the protein content of the hydatid fluid compartment in E. granulosus and E. ortleppi pulmonary bovine cysts to better describe and compare their molecular arsenal at the host-parasite interface. METHODS: Hydatid fluid samples from three isolates of each species were analyzed using mass spectrometry-based proteomics (LC-MS/MS). In silico functional analyses of the identified proteins were performed to examine parasite survival strategies. RESULTS: The identified hydatid fluid protein profiles showed a predominance of parasite proteins compared to host proteins that infiltrate the cysts. We identified 280 parasitic proteins from E. granulosus and 251 from E. ortleppi, including 52 parasitic proteins that were common to all hydatid fluid samples. The in silico functional analysis revealed important molecular functions and processes that are active in pulmonary cystic echinococcosis, such as adhesion, extracellular structures organization, development regulation, signaling transduction, and enzyme activity. CONCLUSIONS: The protein profiles described here provide evidence of important mechanisms related to basic cellular processes and functions that act at the host-parasite interface in cystic echinococcosis. The molecular tools used by E. granulosus and E. ortleppi for survival within the host are potential targets for new therapeutic approaches to treat cystic echinococcosis and other larval cestodiases.


Assuntos
Equinococose Pulmonar , Echinococcus granulosus , Animais , Bovinos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem
5.
J Proteome Res, v. 21, p. 2783-2797, out. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4567

RESUMO

Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.

6.
Biochimie, v. 204, 140-153, jan. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4557

RESUMO

Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.

7.
Biochim Biophys Acta Proteins Proteom, v. 1870, n. 7, 140795, jul. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4387

RESUMO

Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.

8.
Peptides, v. 154, 170814, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4377

RESUMO

The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus’ pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme’s primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.

9.
Parasit Vectors, v. 15, 99, mar. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4269

RESUMO

Background Most cystic echinococcosis cases in Southern Brazil are caused by Echinococcus granulosus and Echinococcus ortleppi. Proteomic studies of helminths have increased our knowledge about the molecular survival strategies that are used by parasites. Here, we surveyed the protein content of the hydatid fluid compartment in E. granulosus and E. ortleppi pulmonary bovine cysts to better describe and compare their molecular arsenal at the host-parasite interface. Methods Hydatid fluid samples from three isolates of each species were analyzed using mass spectrometry-based proteomics (LC-MS/MS). In silico functional analyses of the identified proteins were performed to examine parasite survival strategies. Results The identified hydatid fluid protein profiles showed a predominance of parasite proteins compared to host proteins that infiltrate the cysts. We identified 280 parasitic proteins from E. granulosus and 251 from E. ortleppi, including 52 parasitic proteins that were common to all hydatid fluid samples. The in silico functional analysis revealed important molecular functions and processes that are active in pulmonary cystic echinococcosis, such as adhesion, extracellular structures organization, development regulation, signaling transduction, and enzyme activity. Conclusions The protein profiles described here provide evidence of important mechanisms related to basic cellular processes and functions that act at the host-parasite interface in cystic echinococcosis. The molecular tools used by E. granulosus and E. ortleppi for survival within the host are potential targets for new therapeutic approaches to treat cystic echinococcosis and other larval cestodiases.

10.
PLoS Negl Trop Dis ; 15(9): e0009715, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478462

RESUMO

Patients bitten by snakes consistently manifest a bleeding tendency, in which thrombocytopenia, consumption coagulopathy, mucous bleeding, and, more rarely, thrombotic microangiopathy, are observed. Von Willebrand factor (VWF) is required for primary hemostasis, and some venom proteins, such as botrocetin (a C-type lectin-like protein) and snake venom metalloproteinases (SVMP), disturb the normal interaction between platelets and VWF, possibly contributing to snakebite-induced bleedings. To understand the relationship among plasma VWF, platelets, botrocetin and SVMP from Bothrops jararaca snake venom (BjV) in the development of thrombocytopenia, we used (a) Wistar rats injected s.c. with BjV preincubated with anti-botrocetin antibodies (ABA) and/or Na2-EDTA (a SVMP inhibitor), and (b) VWF knockout mice (Vwf-/-) injected with BjV. Under all conditions, BjV induced a rapid and intense thrombocytopenia. In rats, BjV alone reduced the levels of VWF:Ag, VWF:CB, high molecular weight multimers of VWF, ADAMTS13 activity, and factor VIII. Moreover, VWF:Ag levels in rats that received BjV preincubated with Na2-EDTA and/or ABA tended to recover faster. In mice, BjV caused thrombocytopenia in both Vwf-/- and C57BL/6 (background control) strains, and VWF:Ag levels tended to decrease in C57BL/6, demonstrating that thrombocytopenia was independent of the presence of plasma VWF. These findings showed that botrocetin present in BjV failed to affect the extent or the time course of thrombocytopenia induced by envenomation, but it contributed to decrease the levels and function of plasma VWF. Thus, VWF alterations during B. jararaca envenomation are an ancillary event, and not the main mechanism leading to decreased platelet counts.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/complicações , Venenos de Serpentes/toxicidade , Trombocitopenia/etiologia , Trombocitopenia/metabolismo , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Venenos de Crotalídeos/metabolismo , Feminino , Humanos , Masculino , Metaloproteases/metabolismo , Metaloproteases/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Venenos de Serpentes/enzimologia , Venenos de Serpentes/metabolismo , Trombocitopenia/sangue , Trombocitopenia/genética , Fator de von Willebrand/genética
11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972420

RESUMO

Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome of Bothrops jararaca, a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A2 (PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option.


Assuntos
Bothrops/genética , Venenos de Crotalídeos/genética , Evolução Molecular , Genoma/genética , Venenos de Serpentes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bothrops/classificação , Venenos de Crotalídeos/classificação , Feminino , Perfilação da Expressão Gênica/métodos , Filogenia , Proteoma/metabolismo , Proteômica/métodos , RNA-Seq/métodos , Análise de Sequência de DNA/métodos , Venenos de Serpentes/classificação
12.
Toxins, v. 13, n. 11, 764, out. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4006

RESUMO

Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.

13.
PLoS Negl Trop Dis, v. 15, n. 9, e0009715, set. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3938

RESUMO

Patients bitten by snakes consistently manifest a bleeding tendency, in which thrombocytopenia, consumption coagulopathy, mucous bleeding, and, more rarely, thrombotic microangiopathy, are observed. Von Willebrand factor (VWF) is required for primary hemostasis, and some venom proteins, such as botrocetin (a C-type lectin-like protein) and snake venom metalloproteinases (SVMP), disturb the normal interaction between platelets and VWF, possibly contributing to snakebite-induced bleedings. To understand the relationship among plasma VWF, platelets, botrocetin and SVMP from Bothrops jararaca snake venom (BjV) in the development of thrombocytopenia, we used (a) Wistar rats injected s.c. with BjV preincubated with anti-botrocetin antibodies (ABA) and/or Na2-EDTA (a SVMP inhibitor), and (b) VWF knockout mice (Vwf-/-) injected with BjV. Under all conditions, BjV induced a rapid and intense thrombocytopenia. In rats, BjV alone reduced the levels of VWF:Ag, VWF:CB, high molecular weight multimers of VWF, ADAMTS13 activity, and factor VIII. Moreover, VWF:Ag levels in rats that received BjV preincubated with Na2-EDTA and/or ABA tended to recover faster. In mice, BjV caused thrombocytopenia in both Vwf-/- and C57BL/6 (background control) strains, and VWF:Ag levels tended to decrease in C57BL/6, demonstrating that thrombocytopenia was independent of the presence of plasma VWF. These findings showed that botrocetin present in BjV failed to affect the extent or the time course of thrombocytopenia induced by envenomation, but it contributed to decrease the levels and function of plasma VWF. Thus, VWF alterations during B. jararaca envenomation are an ancillary event, and not the main mechanism leading to decreased platelet counts.

14.
J Chem Technol Biotechnol, v. 96, n. 9, p. 2659-2666, set. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3865

RESUMO

Abstract BACKGROUND Cell-free protein synthesis (CFPS) technology has emerged as a powerful tool for a variety of biotechnological applications, including the expression of different classes of biopharmaceutical products. L-Asparaginase (E.C. Number: 3.5.1.1, L-asparagine amidohydrolase) (L-ASNase) is an important biopharmaceutical used to treat leukemia, but expression of multiple proteoforms in CFPS systems and rapid characterization using standard colorimetric methods has not yet been fully exploited. Herein, recombinant expression and characterization of an L-ASNase from Erwinia chrysanthemi (Erwinase) using a new CFPS protocol is reported. RESULTS Expression and quantification of the enzymatic activity of a soluble his-tagged L-ASNase directly from a CFPS reaction was successfully achieved. Purification of the protein was not required in order to assess its biological activity. Activity of L-ASNase was significantly higher than the control reaction (7.07 ± 0.68 U mL–1 vs. 1.83 ± 0.14 U mL–1, respectively). Expression of a mutant Erwinase proteoform – V293M – was also achieved and it presented a similar enzymatic activity. No significant loss in L-ASNase enzymatic activity was noticed after removal of cyclic AMP, spermidine, transfer RNA, T7 RNA polymerase and, especially, ammonium acetate (a common interference in ASNase enzymatic assays) from the CFPS reaction. CONCLUSION The protocol developed in this work will facilitate the screening of novel clinically-relevant L-ASNase proteoforms. © 2021 Society of Chemical Industry (SCI).

15.
Proc Natl Acad Sci U S A, v. 118, n. 20, e2015159118, abr. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3732

RESUMO

Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome of Bothrops jararaca, a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A2 (PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option

16.
Biochim Biophys Acta Proteins Proteom, v. 1869, n. 7, 140643, mar. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3633

RESUMO

Using approaches of transcriptomics and proteomics we have shown that the phenotype of Bothrops jararaca venom undergoes a significant rearrangement upon neonate to adult transition. Most regulatory processes in biology are intrinsically related to modifications of protein structure, function, and abundance. However, it is unclear to which extent intrinsic proteolysis affects toxins and snake venom phenotypes upon ontogenesis. Here we assessed the natural N-terminome of Bothrops jararaca newborn and adult venoms and explored the degree of N-terminal protein truncation in ontogenetic-based proteome variation. To this end we applied the Terminal Amine Isotopic Labeling of Substrates (TAILS) technology to characterize venom collected in the presence of proteinase inhibitors. We identified natural N-terminal sequences in the newborn (71) and adult (84) venoms, from which only 37 were common to both. However, truncated toxins were found in higher number in the newborn (212) than in the adult (140) venom. Moreover, sequences N-terminally blocked by pyroglutamic acid were identified in the newborn (55) and adult (49) venoms. Most toxin classes identified by their natural N-terminal sequences showed a similar number of unique peptides in the newborn and adult venoms, however, those of serine proteinases and C-type lectins were more abundant in the adult venom. Truncated sequences from at least ten toxin classes were detected, however the catalytic and cysteine-rich domains of metalloproteinases were the most prone to proteolysis, mainly in the newborn venom. Our results underscore the pervasiveness of truncations in most toxin classes and highlight variable post-translational events in newborn and adult venoms.

17.
J Proteome Res, v. 20, n. 2, p. 1341-1358, jan. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3438

RESUMO

Bothrops alcatraz, a species endemic to Alcatrazes Islands, is regarded as critically endangered due to its small area of occurrence and the declining quality of its habitat. We recently reported the identification of N-glycans attached to toxins of Bothrops species, showing similar compositions in venoms of the B. jararaca complex (B. jararaca, B. insularis, and B. alcatraz). Here, we characterized B. alcatraz venom using electrophoretic, proteomic, and glycoproteomic approaches. Electrophoresis showed that B. alcatraz venom differs from B. jararaca and B. insularis; however, N-glycan removal revealed similarities between them, indicating that the occupation of N-glycosylation sites contributes to interspecies variability in the B. jararaca complex. Metalloproteinase was the major toxin class identified in the B. alcatraz venom proteome followed by serine proteinase and C-type lectin, and overall, the adult B. alcatraz venom resembles that of B. jararaca juvenile specimens. The comparative glycoproteomic analysis of B. alcatraz venom with B. jararaca and B. insularis indicated that there may be differences in the utilization of N-glycosylation motifs among their different toxin classes. Furthermore, we prospected for the first time the N-terminome of a snake venom using the terminal amine isotopic labeling of substrates (TAILS) approach and report the presence of ∼30% of N-termini corresponding to truncated toxin forms and ∼37% N-terminal sequences blocked by pyroglutamic acid in B. alcatraz venom. These findings underscore a low correlation between venom gland transcriptomes and proteomes and support the view that post-translational processes play a major role in shaping venom phenotypes.

18.
J Proteomics, v. 232, 104063, fev. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3378

RESUMO

Protein-protein interaction networks (PPINs) are static representations of protein connections in which topological features such as subgraphs (communities) may contain proteins functionally related, revealing an additional layer of interactome complexity. We created two PPINs from the secretomes of a paired set of murine melanocytes (a normal melanocyte and its transformed phenotype). Community structures, identified by a graph clustering algorithm, resulted in the identification of subgraphs in both networks. Interestingly, the underlying structure of such communities revealed shared and exclusive proteins (core and exclusive nodes, respectively), in addition to proteins that changed their location within each community (rewired nodes). Functional enrichment analysis of core nodes revealed conserved biological functions in both networks whereas exclusive and rewired nodes in the tumoral phenotype network were enriched in cancer-related processes, including TGFβ signaling. We found a remarkable shift in the tumoral interactome, resulting in an emerging pattern which was driven by the presence of exclusive nodes and may represent functional network motifs. Our findings suggest that the rearrangement in the tumoral interactome may be correlated with the malignant transformation of melanocytes associated with substrate adhesion impediment. The interactions found in core and new/rewired nodes might potentially be targeted for therapeutic intervention in melanoma treatment. Significance: Malignant transformation is a result of synergistic action of multiple molecular factors in which genetic alterations as well as protein expression play paramount roles. During oncogenesis, cellular crosstalk through the secretion of soluble mediators modulates the phenotype of transformed cells which ultimately enables them to successfully disrupt important signaling pathways, including those related to cell growth and proliferation. Therefore, in this work we profiled the secretomes of a paired set of normal and transformed phenotypes of a murine melanocyte. After assembling the two interactomes, clusters of functionally related proteins (network communities) were observed as well as emerging patterns of network rewiring which may represent an interactome signature of transformed cells. In summary, the significance of this study relies on the understanding of the repertoire of ‘normal’ and ‘tumoral’ secretomes and, more importantly, the set of interacting proteins (the interactome) in both of these conditions, which may reveal key components that might be potentially targeted for therapeutic intervention.

19.
Biochim Biophys Acta Proteins Proteom, v. 1868, n. 12, 140525, dez. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3175

RESUMO

The signaling events triggered by soluble mediators released from both transformed and stromal cells shape the phenotype of tumoral cells and have significant implications in cancer development and progression. In this study we performed an in vitro heterotypic signaling assays by evaluating the proteome diversity of human dermal fibroblasts after stimulation with the conditioned media obtained from malignant melanoma cells. In addition, we also evaluated the changes in the proteome of melanoma cells after stimulation with their own conditioned media as well as with the conditioned medium from melanoma-stimulated fibroblasts. Our results revealed a clear rearrangement in the proteome of stromal and malignant cells upon crosstalk of soluble mediators. The main proteome signature of fibroblasts stimulated with melanoma conditioned medium was related to protein synthesis, which indicates that this process might be an early response of stromal cells. In addition, the conditioned medium derived from ‘primed’ stromal cells (melanoma-stimulated fibroblasts) was more effective in altering the functional phenotype (cell migration) of malignant cells than the conditioned medium from non-stimulated fibroblasts. Collectively, self- and cross-stimulation may play a key role in shaping the tumor microenvironment and enable tumoral cells to succeed in the process of melanoma progression and metastasis. Although the proteome landscape of cells participating in such a heterotypic signaling represents a snapshot of a highly dynamic state, understanding the diversity of proteins and enriched biological pathways resulting from stimulated cell states may allow for targeting specific cell regulatory motifs involved in melanoma progression and metastasis.

20.
Sci Rep, v. 10, 12912, jul. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3121

RESUMO

Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...