Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(14): 9892-9911, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38528926

RESUMO

Waste valorisation through pyrolysis generates solid, liquid and gaseous fractions that need to be deeply characterised in order to try to recover secondary raw materials or chemicals. Depending on the waste and the process conditions, the liquid fraction obtained (so-called pyrolysis oil) can be very complex. This work proposes a method to quantitatively measure the composition of pyrolysis oils coming from three types of polymeric waste: (1) plastic packaging from sorting plants of municipal solid waste, (2) plastic rich fractions rejected from sorting plants of waste of electrical and electronic equipment and (3) end-of-life carbon/glass fibre reinforced thermoset polymers. The proposed methodology uses a gas chromatography (GC) coupled with mass spectrometer detector (MS) analytical technique, a certified saturated alkanes' mix, an internal standard and fourteen model compounds. Validation of the methodology concluded that the average relative error was between -59 wt% and +62 wt% (with standard deviations between 0 wt% and 13 wt%). Considering that the state-of-the-art scenario to quantify complex plastic pyrolysis oils as a whole is almost none and that they are usually evaluated only qualitatively based on the area percentage of the GC-MS chromatograms, the presented quantification methodology implies a clear step forward towards complex pyrolysis oil compositional quantification in a cost-effective way. Besides, this quantification methodology enables determining what proportion is being detected by GC-MS with respect to the total oil. Finally, the presented work includes all the Kováts RI for complex temperature-program gas chromatography of all the signals identified in the analysed pyrolysis oils, to be readily available to other researchers towards the identification of chemical compounds in their studies.

2.
Chemosphere ; 300: 134499, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35390409

RESUMO

Waste generation is one of the greatest problems of present times, and the recycling of carbon fibre reinforced composites one big challenge to face. Currently, no resin valorisation is done in thermal fibre recycling methods. However, when pyrolysis is used, additional valuable compounds (syngas or H2-rich gas) could be obtained by upgrading the generated vapours and gases. This work presents the thermodynamic and kinetic multi-reaction modelling of the pyrolysis vapours and gases upgrading process in Aspen Plus software. These models forecast the theoretical and in-between scenario of a thermal upgrading process of an experimentally characterised vapours and gases stream (a blend of thirty-five compounds). Indeed, the influence of temperature (500 °C-1200 °C) and pressure (ΔP = 0, 1 and 2 bar) operating parameters are analysed in the outlet composition, residence time and possible reaction mechanisms occurring. Validation of the kinetic model has been done comparing predicted outlet composition with experimental data (at 700 °C and 900 °C with ΔP = 0 bar) for H2 (g), CO (g), CO2 (g), CH4 (g), H2O (v) and C (s). Kinetic and experimental results show the same tendency with temperature, validating the model for further research. Good kinetic fit is obtained for H2 (g) (absolute error: 0.5 wt% at constant temperature and 0.3 wt% at variable temperature) and H2O (v) shows the highest error at variable T (8.8 wt%). Both simulation and experimental results evolve towards simpler, less toxic and higher generation of hydrogen-rich gas with increasing operating temperature and pressure.


Assuntos
Gases , Pirólise , Hidrogênio , Reciclagem , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...