Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233944

RESUMO

Alternative sintering technologies promise to overcome issues associated with conventional ceramic sintering such as high thermal budgets and CO2 footprint. The sintering process becomes even more relevant for alkali-based piezoelectric ceramics such as K0.5Na0.5NbO3 (KNN) typically fired above 1100 °C for several hours that induces secondary phase formation and, thereby, degrades their electrical characteristics. Here, an ability of KNN ceramics to be of high performance is successfully demonstrated, using an electric field- and current-assisted Flash sintering technique at 900 °C only. Reported for the first time, Flash sintered KNN ceramics have room-temperature remnant polarization Pr = 21 µC/cm2 and longitudinal piezoelectric coefficient d33 = 117 pC/N, slightly superior to that of conventional ones due to the reduced content of secondary phases. High-performance KNN ceramics Flash sintered at a low-thermal budget have implications for the development of innovative low carbon technologies, electroceramics stakeholders, and piezoelectric energy harvesters.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234546

RESUMO

The request for extremely low-temperature and short-time sintering techniques has guided the development of alternative ceramic processing. Atmosphere-assisted FLASH sintering (AAFS) combines the direct use of electric power to packed powders with the engineering of operating atmosphere to allow low-temperature conduction. The AAFS of nanometric Potassium Sodium Niobate, K0.5Na0.5NbO3, a lead-free piezoelectric, is of great interest to electronics technology to produce efficient, low-thermal-budget sensors, actuators and piezo harvesters, among others. Not previously studied, the role of different atmospheres for the decrease in FLASH temperature (TF) of KNN is presented in this work. Additionally, the effect of the humidity presence on the operating atmosphere and the role of the compact morphology undergoing FLASH are investigated. While the low partial pressure of oxygen (reducing atmospheres) allows the decrease of TF, limited densification is observed. It is shown that AAFS is responsible for a dramatic decrease in the operating temperature (T < 320 °C), while water is essential to allow appreciable densification. In addition, the particles/pores morphology on the green compact impacts the uniformity of AAFS densification.

3.
Materials (Basel) ; 14(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803462

RESUMO

The considerable decrease in temperature and time makes FLASH sintering a more sustainable alternative for materials processing. FLASH also becomes relevant if volatile elements are part of the material to be processed, as in alkali-based piezoelectrics like the promising lead-free K0.5Na0.5NbO3 (KNN). Due to the volatile nature of K and Na, KNN is difficult to process by conventional sintering. Although some studies have been undertaken, much remains to be understood to properly engineer the FLASH sintering process of KNN. In this work, the effect of FLASH temperature, TF, is studied as a function of the particle size and impurity content of KNN powders. Differences are demonstrated: while the particle size and impurity degree markedly influence TF, they do not significantly affect the densification and grain growth processes. The conductivity of KNN FLASH-sintered ceramics and KNN single crystals (SCs) is compared to elucidate the role of particles' surface conduction. When particles' surfaces are not present, as in the case of SCs, the FLASH process requires higher temperatures and conductivity values. These results have implications in understanding FLASH sintering towards a more sustainable processing of lead-free piezoelectrics.

4.
Nanomaterials (Basel) ; 9(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718013

RESUMO

If piezoelectric micro-devices based on K0.5Na0.5NbO3 (KNN) thin films are to achieve commercialization, it is critical to optimize the films' performance using low-cost scalable processing conditions. Here, sol-gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500-600 nm and (Na + K)/Nb ratio of 1.07-1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA