Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 93: 107444, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31494534

RESUMO

A zwitterionic-based chemical, the 3,3'-(octadecylamino)dipropionic acid, was quantum-theoretically designed to be applied as a corrosion inhibitor for protecting oxidized iron surfaces against the attack of very corrosive gasolines. Its performance, as well as those of worldwide-employed nitrogen-free carboxylic-diacid-based corrosion inhibitors, were experimentally evaluated and compared. Through Density-Functional-Theory calculations of the molecular interactions of the corrosion inhibitors with an iron-oxide cluster model, along with the experimental corrosion-inhibiting evaluations, it is revealed that the zwitterionic-based chemical substantially overcomes the performance of nitrogen-free chemicals. It is shown by the theoretical results that the two carboxylic heads of either, the zwitterionic-based or the nitrogen-free corrosion inhibitors, reinforce the octahedral coordination around the exposed Fe3+ atom of the iron oxide. Furthermore, when the zwitterionic-based chemical is bonded to the Fe3+ atom, a two-rings chelate is formed, in contrast to the one-ring chelate formed by the nitrogen-free corrosion inhibitors. Finally, it is theoretically predicted that oleic solvents improve the performance of the zwitterionic-based corrosion inhibitor because preclude the steric hindrance of nitrogen.


Assuntos
Corrosão , Compostos Férricos/química , Ferro/química , Modelos Moleculares , Nitrogênio/química , Teoria Quântica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...