Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(30)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38653208

RESUMO

Carbon-based electrode materials have widely been used in supercapacitors. Unfortunately, the fabrication of the supercapacitors includes a polymeric binding material that leads to an undesirable addition of weight along with an increased charge transfer resistance. Herein, binder-free and lightweight electrodes were fabricated using powder processing of carbon nanofibers (CNFs) and graphene nanoplatelets (GNPs) resulting in a hybrid all-carbon composite material. The structural, morphological, and electrochemical properties of the composite electrodes were studied at different concentrations of GNPs. The specific capacitance (Cs) of the CNFs/GNPs composite was improved by increasing the concentration of GNPs. A maximum Cs of around 120 F g-1was achieved at 90 wt% GNPs which is around 5-fold higher in value than the pristine CNFs in 1 M potassium hydroxides (KOH), which then further increased to 189 F g-1in 6 M KOH electrolyte. The energy density of around 20 Wh kg-1with the corresponding power density of 340 W kg-1was achieved in the supercapacitor containing 90 wt% GNPs. The enhanced electrochemical performance of the composite is related to the presence of a synergistic effect and the CNFs establishing conductive/percolating networks. Such binder-free all-carbon electrodes can be a potential candidate for next-generation energy applications.

2.
Nanoscale Res Lett ; 12(1): 639, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29288337

RESUMO

Symmetric supercapacitors are fabricated by carbon nanofibers (CNF) and activated carbon (AC) using similar proportions of 7 wt% polyvinylidene fluoride (PVDF) polymer binder in an aqueous electrolyte. In this study, a comparison of porous texture and electrochemical performances between CNFs and AC based supercapacitors was carried out. Electrodes were assembled in the cell without a current collector. The prepared electrodes of CNFs and AC present Brunauer-Emmett-Teller (BET) surface area of 83 and 1042 m2/g, respectively. The dominant pore structure for CNFs is mesoporous while for AC is micropore. The results showed that AC provided higher specific capacitance retention up to very fast scan rate of 500 mV/s. AC carbon had a specific capacitance of 334 F/g, and CNFs had 52 F/g at scan rate 5 mV/s in aqueous solution. Also, the results indicate the superior conductivity of CNFs in contrast to AC counterparts. The measured equivalent series resistance (ESR) showed a very small value for CNFs (0.28 Ω) in comparison to AC that has an ESR resistance of (3.72 Ω). Moreover, CNF delivered higher specific power (1860 W/kg) than that for AC (450 W/kg). On the other hand, AC gave higher specific energy (18.1 Wh/kg) than that for CNFs (2 Wh/kg).This indicates that the AC is good for energy applications. Whereas, CNF is good for power application. Indeed, the higher surface area will lead to higher specific capacitance and hence higher energy density for AC. For CNF, lower ESR is responsible for having higher power density.Both CNF and AC supercapacitor exhibit an excellent charge-discharge stability up to 2500 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...