Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 242(7): 1773-1786, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822824

RESUMO

Sinusoidal galvanic vestibular stimulation (sGVS) induces robust modulation of muscle sympathetic nerve activity (MSNA) alongside perceptions of side-to-side movement, sometimes with an accompanying feeling of nausea. We recently showed that transcranial alternating current stimulation (tACS) of the dorsolateral prefrontal cortex (dlPFC) also modulates MSNA, but does not generate any perceptions. Here, we tested the hypothesis that when the two stimuli are given concurrently, the modulation of MSNA would be additive. MSNA was recorded from 11 awake participants via a tungsten microelectrode inserted percutaneously into the right common peroneal nerve at the fibular head. Sinusoidal stimuli (± 2 mA, 0.08 Hz, 100 cycles) were applied in randomised order as follows: (i) tACS of the dlPFC at electroencephalogram (EEG) site F4 and referenced to the nasion; (ii) bilateral sGVS applied to the vestibular apparatuses via the mastoid processes; and (iii) tACS and sGVS together. Previously obtained data from 12 participants supplemented the data for stimulation protocols (i) and (ii). Cross-correlation analysis revealed that each stimulation protocol caused significant modulation of MSNA (modulation index (paired data): 35.2 ± 19.4% for sGVS; 27.8 ± 15.2% for tACS), but there were no additive effects when tACS and sGVS were delivered concurrently (32.1 ± 18.5%). This implies that the vestibulosympathetic reflexes are attenuated with concurrent dlPFC stimulation. These results suggest that the dlPFC is capable of blocking the processing of vestibular inputs through the brainstem and, hence, the generation of vestibulosympathetic reflexes.


Assuntos
Músculo Esquelético , Sistema Nervoso Simpático , Vestíbulo do Labirinto , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Vestíbulo do Labirinto/fisiologia , Sistema Nervoso Simpático/fisiologia , Músculo Esquelético/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Estimulação Transcraniana por Corrente Contínua , Eletroencefalografia/métodos , Córtex Pré-Frontal/fisiologia , Estimulação Elétrica/métodos
2.
Hypertension ; 81(6): e63-e70, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506059

RESUMO

BACKGROUND: Renal denervation is a recognized adjunct therapy for hypertension with clinically significant blood pressure (BP)-lowering effects. Long-term follow-up data are critical to ascertain durability of the effect and safety. Aside from the 36-month follow-up data available from randomized control trials, recent cohort analyses extended follow-up out to 10 years. We sought to analyze study-level data and quantify the ambulatory BP reduction of renal denervation across contemporary randomized sham-controlled trials and available long-term follow-up data up to 10 years from observational studies. METHODS: A systematic review was performed with data from 4 observational studies with follow-up out to 10 years and 2 randomized controlled trials meeting search and inclusion criteria with follow-up data out to 36 months. Study-level data were extracted and compared statistically. RESULTS: In 2 contemporary randomized controlled trials with 36-month follow-up, an average sham-adjusted ambulatory systolic BP reduction of -12.7±4.5 mm Hg from baseline was observed (P=0.05). Likewise, a -14.8±3.4 mm Hg ambulatory systolic BP reduction was found across observational studies with a mean long-term follow-up of 7.7±2.8 years (range, 3.5-9.4 years; P=0.0051). The observed reduction in estimated glomerular filtration rate across the long-term follow-up was in line with the predicted age-related decline. Antihypertensive drug burden was similar at baseline and follow-up. CONCLUSIONS: Renal denervation is associated with a significant and clinically meaningful reduction in ambulatory systolic BP in both contemporary randomized sham-controlled trials up to 36 months and observational cohort studies up to 10 years without adverse consequences on renal function.


Assuntos
Pressão Sanguínea , Hipertensão , Rim , Simpatectomia , Humanos , Hipertensão/cirurgia , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Pressão Sanguínea/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Rim/inervação , Simpatectomia/métodos , Ablação por Cateter/métodos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Monitorização Ambulatorial da Pressão Arterial/métodos
3.
Clin Auton Res ; 34(1): 177-189, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308178

RESUMO

PURPOSE: Sympathetic nerve activity towards muscle (MSNA) and skin (SSNA) regulates various physiological parameters. MSNA primarily functions in blood pressure and flow, while SSNA operates in thermoregulation. Physical and cognitive stressors have been shown to have effects on both types of sympathetic activity, but there are inconsistencies as to what these effects are. This article aims to address the discrepancies in the literature and compare MSNA and SSNA responses. METHODS: Microelectrode recordings were taken from the common peroneal nerve in 29 participants: MSNA (n = 21), SSNA (n = 16) and both MSNA and SSNA (n = 8). Participants were subjected to four different 2-min stressors: two physical (isometric handgrip task, cold pressor test) and two cognitive (mental arithmetic task, Stroop colour-word conflict test), the latter of which saw participants separated into responders and non-responders to the stressors. It was hypothesised that the physical stressors would have a greater effect on MSNA than SSNA, while the cognitive stressors would operate conversely. RESULTS: Peristimulus time histogram (PSTH) analysis showed the mental arithmetic task to significantly increase both MSNA and SSNA; the isometric handgrip task and cold pressor test to increase MSNA, but not SSNA; and Stroop test to have no significant effects on changing MSNA or SSNA from baseline. Additionally, stress responses did not differ between MSNA and SSNA in participants who had both sets of data recorded. CONCLUSIONS: This study has provided evidence to support the literature which claims cognitive stressors increase sympathetic activity, and provides much needed SSNA data in response to stressors.


Assuntos
Força da Mão , Pele , Humanos , Pele/inervação , Músculos/inervação , Pressão Sanguínea/fisiologia , Sistema Nervoso Simpático/fisiologia , Cognição , Músculo Esquelético/inervação
4.
J Hypertens ; 42(5): 922-927, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230602

RESUMO

BACKGROUND: Renal denervation (RDN) has been consistently shown in recent sham-controlled clinical trials to reduce blood pressure (BP). Salt sensitivity is a critical factor in hypertension pathogenesis, but cumbersome to assess by gold-standard methodology. Twenty-four-hour average heart rate (HR) and mean arterial pressure (MAP) dipping, taken by ambulatory blood pressure monitoring (ABPM), stratifies patients into high, moderate, and low salt sensitivity index (SSI) risk categories. OBJECTIVES: We aimed to assess whether ABPM-derived SSI risk could predict the systolic blood pressure reduction at long-term follow-up in a real-world RDN patient cohort. METHODS: Sixty participants had repeat ABPM as part of a renal denervation long-term follow-up. Average time since RDN was 8.9 ±â€Š1.2 years. Based on baseline ABPM, participants were stratified into low (HR < 70 bpm and MAP dipping > 10%), moderate (HR ≥70 bpm or MAP dipping ≤ 10%), and high (HR ≥ 70 bpm and MAP dipping ≤ 10%) SSI risk groups, respectively. RESULTS: One-way ANOVA indicated a significant treatment effect ( P  = 0.03) between low ( n  = 15), moderate ( n  = 35), and high ( n  = 10) SSI risk with systolic BP reduction of 9.6 ±â€Š3.7 mmHg, 8.4 ±â€Š3.5 mmHg, and 28.2 ±â€Š9.6 mmHg, respectively. Baseline BP was not significantly different between SSI Risk groups ( P  = 0.18). High SSI risk independently correlated with systolic BP reduction ( P  = 0.02). CONCLUSIONS: Our investigation indicates that SSI risk may be a simple and accessible measure for predicting the BP response to RDN. However, the influence of pharmacological therapy on these participants is an important extraneous variable requiring testing in prospective or drug naive RDN cohorts.


Assuntos
Hipertensão , Hipotensão , Humanos , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Frequência Cardíaca , Estudos Prospectivos , Rim , Denervação/métodos , Simpatectomia/efeitos adversos , Simpatectomia/métodos , Resultado do Tratamento
6.
Exp Brain Res ; 241(11-12): 2845-2853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902866

RESUMO

The vestibular apparatus provides spatial information on the position of the head in space and with respect to gravity. Low-frequency sinusoidal galvanic vestibular stimulation (sGVS), a means of selectively changing the firing of vestibular afferents, induces a frequency-dependent perception of sway and, in some individuals, induces nausea. Given that vestibular afferents project to the insular cortex-which forms part of the vestibular cortex-and that the insula receives inputs from the dorsolateral prefrontal cortex (dlPFC), we tested the hypothesis that electrical stimulation of the dlPFC can modulate vestibular inputs. Sinusoidal electrical stimulation (± 2 mA, 0.08 Hz, 100 cycles) was delivered via surface electrodes over (1) the mastoid processes alone (sGVS), (2) electroencephalogram (EEG) site F4 (right dlPFC) and the nasion or (3) to each site concurrently (sGVS + dlPFC) in 23 participants. The same stimulation protocol was used in a separate study to investigate EEG site F3 (left dlPFC) instead of F4 in 13 participants. During sGVS, all participants reported perceptions of sway and 13 participants also reported nausea, neither sensation of which occurred as a result of dlPFC stimulation. Interestingly, when sGVS and dlPFC stimulations were delivered concurrently, vestibular perceptions and sensations of nausea were almost completely abolished. We conclude that the dlPFC provides top-down control of vestibular inputs and further suggests that dlPFC stimulation may provide a novel means of controlling nausea.


Assuntos
Córtex Pré-Frontal Dorsolateral , Vestíbulo do Labirinto , Humanos , Vestíbulo do Labirinto/fisiologia , Estimulação Elétrica/métodos , Eletroencefalografia , Náusea , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos
7.
Cereb Cortex ; 33(13): 8265-8272, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37143172

RESUMO

The dorsolateral prefrontal cortex (dlPFC) is primarily involved in higher order executive functions, with there being evidence of lateralization. Brain imaging studies have revealed its link to the generation of skin sympathetic nerve activity (SSNA), which is elevated in states of emotional arousal or anxiety. However, no studies have directly explored dlPFC influences on SSNA. Transcranial alternating current stimulation (-2 to 2 mA, 0.08 Hz, 100 cycles) was applied between the left or right dlPFC and nasion via surface electrodes. Spontaneous bursts of SSNA were recorded from the common peroneal nerve via a tungsten microelectrode in 21 healthy participants. The modulation index was calculated for each stimulation paradigm by constructing cross-correlation histograms between SSNA and the sinusoidal stimulus. Stimulation of the dlPFC caused significant modulation of SSNA, but there was no significant difference in the median modulation index across sides. Stimulation also caused cyclic modulation of skin blood flow and sweat release. We have shown for the first time that stimulation of the dlPFC causes modulation of SSNA, also reflected in the effector-organ responses. This supports a role for the dlPFC in the control of SSNA, which likely contributes to the ability of emotions to bring about cutaneous vasoconstriction and sweat release.


Assuntos
Córtex Pré-Frontal Dorsolateral , Pele , Humanos , Fenômenos Fisiológicos da Pele , Sistema Nervoso Simpático/fisiologia , Encéfalo/fisiologia , Córtex Pré-Frontal
8.
Hypertension ; 80(4): 811-819, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36762561

RESUMO

BACKGROUND: Recent sham-controlled randomized clinical trials have confirmed the safety and efficacy of catheter-based renal denervation (RDN). Long-term safety and efficacy data beyond 3 years are scarce. Here, we report on outcomes after RDN in a cohort of patients with resistant hypertension with an average of ≈9-year follow-up (FU). METHODS: We recruited patients with resistant hypertension who were previously enrolled in various RDN trials applying radiofrequency energy for blood pressure (BP) lowering. All participants had baseline assessments before RDN and repeat assessment at long-term FU including medical history, automated office and ambulatory BP measurement, and routine blood and urine tests. We analyzed changes between baseline and long-term FU. RESULTS: A total of 66 participants (mean±SD, 70.0±10.3 years; 76.3% men) completed long-term FU investigations with a mean of 8.8±1.2 years post-procedure. Compared with baseline, ambulatory systolic BP was reduced by -12.1±21.6 (from 145.2 to 133.1) mm Hg (P<0.0001) and diastolic BP by -8.8±12.8 (from 81.2 to 72.7) mm Hg (P<0.0001). Mean heart rate remained unchanged. At long-term FU, participants were on one less antihypertensive medication compared with baseline (P=0.0052). Renal function assessed by estimated glomerular filtration rate fell within the expected age-associated rate of decline from 71.1 to 61.2 mL/min per 1.73 m2. Time above target was reduced significantly from 75.0±25.9% at baseline to 47.3±30.3% at long-term FU (P<0.0001). CONCLUSIONS: RDN results in a significant and robust reduction in both office and ambulatory systolic and diastolic BP at ≈9-year FU after catheter-based RDN on less medication and without evidence of adverse consequences on renal function.


Assuntos
Hipertensão , Hipotensão , Feminino , Humanos , Masculino , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/fisiologia , Monitorização Ambulatorial da Pressão Arterial , Catéteres , Denervação/métodos , Seguimentos , Hipertensão/diagnóstico , Hipertensão/cirurgia , Hipertensão/tratamento farmacológico , Rim/fisiologia , Simpatectomia/efeitos adversos , Simpatectomia/métodos , Resultado do Tratamento , Idoso , Idoso de 80 Anos ou mais
9.
Cereb Cortex Commun ; 3(2): tgac017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559424

RESUMO

Introduction: Muscle sympathetic nerve activity (MSNA) controls the diameter of arterioles in skeletalmuscle, contributing importantly to the beat-to-beat regulation of blood pressure (BP). Although brain imaging studies have shown that bursts of MSNA originate in the rostral ventrolateral medulla, other subcortical and cortical structures-including the dorsolateral prefrontal cortex (dlPFC)-contribute. Hypothesis: We tested the hypothesis that MSNA and BP could be modulated by stimulating the dlPFC. Method: dlPFC. In 22 individuals MSNA was recorded via microelectrodes inserted into the common peroneal nerve, together with continuous BP, electrocardiographic, and respiration.Stimulation of the right (n=22) or left dlPFC (n=10) was achieved using transcranial alternating current (tcACS; +2 to -2mA, 0.08 Hz,100 cycles), applied between the nasion and electrodes over the F3 or F4 EEG sites on the scalp. Results: Sinusoidal stimulation of either dlPFC caused cyclicmodulation of MSNA, BP and heart rate, and a significant increase in BP. Conclusion: We have shown, for the first time, that tcACS of the dlPFC in awake humans causes partial entrainment of MSNA, heart rate and BP, arguing for an important role of this higher-level cortical area in the control of cardiovascular function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...