Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27776, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524606

RESUMO

Pavement preventive maintenance (PPM) is critical to ensuring traffic efficiency, road user experience, and safety. However, it imposes significant costs in annual road infrastructure budgets because it requires high-quality and natural material resources. This study provides a systematic and comprehensive review on the use of recycled wastes as an alternative for the natural materials used in PPM mixes. Specifically, the use of recycled waste tires (RWT) and reclaimed asphalt pavement (RAP) in chip seals, microsurfacing, slurry seals, and thin asphalt overlays were discussed. The current state-of-practice in terms of material specification and mix design were comprehensively investigated for PPM mixes containing RAP (RAP-PPM) and PPM with RWT (RWT-PPM). Laboratory and field performances of waste-treated PPM mixes were elaborated and compared with conventional PPM treatments to determine the feasibility of the RAP-PPM and RWT-PPM technologies. Furthermore, current research gaps were identified, and prospects for future investigations were discussed. It is envisaged that this study can provide a sufficient theoretical basis for the widespread practical application and beneficial use of this valuable technology, towards promoting sustainability in pavement maintenance practice.

2.
Environ Sci Pollut Res Int ; 30(23): 64123-64136, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060404

RESUMO

Photodegradation of vehicle emissions is a promising approach for dealing with atmospheric pollution in road tunnels. In this research, copper aluminate nanoparticles (CuAl2O4) were prepared by the sol-gel method using copper nitrate, aluminum nitrate, and citric acid as precursor materials. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy to validate their structure, surface morphology, and optical properties, respectively. The XRD and SEM results confirm that the CuAl2O4 powder has a particle size of 20-37 nm and exhibits a spinel-type structure. The upper limit of the stimulation wavelength in the UV-Vis diffuse reflectance spectrum is located at 725 nm with a band gap (Eg) of about 1.50 eV, which is suitable for effective visible-light degradation. Photocatalytic performance of the CuAl2O4 nanoparticles was analyzed by investigating the effects of light source, calcination temperature, and catalyst loading amount on the degradation of vehicle emissions (CO, HC, and NO). Best results were obtained under fluorescent light irradiation by CuAl2O4 nanoparticles calcined at 700 °C. The optimum catalyst amount for decomposing CO, HC, and NO were determined as 0.5 g, 0.5 g, and 2 g, respectively. Overall, the photocatalytic performance study verifies that spinel CuAl2O4 photocatalyst is a valuable material for next-generation technologies aimed at reducing harmful emissions from vehicles.


Assuntos
Cobre , Emissões de Veículos , Difração de Raios X , Microscopia Eletrônica de Varredura , Catálise
3.
ACS Omega ; 7(48): 43574-43581, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506142

RESUMO

Water is one of the most important and crucial indicators of sustainable development goals (SDGs) for humans and other living organisms. Water demand has outstripped supply, resulting in shortage on a worldwide scale, particularly in arid regions. This water scarcity has impeded agricultural productivity and other developmental projects with the ongoing global warming and other anthropogenic activities making it more complicated. To address the worldwide water crisis, it is worthwhile to convert atmospheric air to drinking water. Sequel to that, a hydrophobic surface was designed using facile lithography to compare its water harvesting efficiency with a hydrophilic surface at different orientation angles. For the research, the hydrophobic designed surface is called biodesigned material, while the hydrophilic natural surface is a Mangifera indica leaf (MIL). It is against this background that we seek to investigate the most suitable orientation angle good for efficient water harvesting. To that end, a 60° inclination angle is the most efficacious orientation for water collection as it outperformed the 30 and 45° orientation angles. To minimize re-evaporation, absorption, suction, and other environmental challenges that impede efficient collection, atmospheric moisture should be collected immediately from functional surfaces.

4.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365731

RESUMO

The use of recycled asphalt pavement (RAP) materials in asphalt concrete pavements (ACP) brings significant cost and environmental benefits. In practice, however, the amount of RAP readily available far exceeds the amount being utilized in ACPs, which still leaves the problem of excess RAP in the environment partially solved. Additionally, ACPs containing RAP materials (i.e., RAP-ACPs) can still be landfilled after they have reached the end of their useful life, which may restore the original environmental waste problem. To address these, researchers have demonstrated different ways to maximize the application of RAP in ACPs. Among them, the use of RAP in pavement preventive maintenance (PPM) treatments and the repeated recycling of RAP-ACPs (i.e., RnAP) are specifically discussed in this review. It is envisaged that, by promoting these two practices, the application and benefits of RAP can be further maximized to improve sustainability. This review also discusses the long-term behavior of RAP-ACP, which is crucial to inspire confidence in the wider application of RAP in ACP. Studies on RAP-PPM have shown that virgin PPM treatments can successfully accommodate RAP materials by adjusting their mix design. So far, research on RnAP has been limited to how multiple-recycling affects the performance properties of the blends, showing improvements in rutting resistance and moisture susceptibility but little effect on linear viscoelasticity and cracking. Overall, the lack of sufficient research is considered to be the biggest challenge in facilitating the implementation of these two sustainable RAP technologies. Little or nothing is known about the bonding mechanisms between RAP and fresh PPM binders, the molecular and chemical changes in RnAP binders, or the functional performance characteristics, actual pavement performance, and long-term performance of both RAP-PPM and RnAP blends. An understanding of these aspects is very relevant to maximize and continue the beneficial reuse of RAP in ACPs while safeguarding human and environmental health.

5.
Biomimetics (Basel) ; 7(4)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36278704

RESUMO

Water shortage has become a global crisis that has posed and still poses a serious threat to the human race, especially in developing countries. Harvesting moisture from the atmosphere is a viable approach to easing the world water crisis due to its ubiquitous nature. Inspired by nature, biotemplate surfaces have been given considerable attention in recent years though these surfaces still suffer from intrinsic trade-offs making replication more challenging. In the design of artificial surfaces, maximizing their full potential and benefits as that of the natural surface is difficult. Here, we conveniently made use of Mangifera indica leaf (MIL) and its replicated surfaces (RMIL) to collect atmosphere water. This research provides a novel insight into the facile replication mechanism of a wettable surface made of Polydimethylsiloxane (PDMS), which has proven useful in collecting atmospheric water. This comparative study shows that biotemplate surfaces (RMIL) with hydrophobic characteristics outperform natural hydrophilic surfaces (DMIL and FMIL) in droplet termination and water collection abilities. Water collection efficiency from the Replicated Mangifera indica leaf (RMIL) surface was shown to be superior to that of the Dry Mangifera indica leaf (DMIL) and Fresh Mangifera indica leaf (FMIL) surfaces. Furthermore, the wettability of the DMIL, FMIL, and RMIL was thoroughly investigated, with the apices playing an important role in droplet roll-off.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...