Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 124(2): 615-26, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11027712

RESUMO

The expression and secretion of acid phosphatase (APase) was investigated in Indian mustard (Brassica juncea L. Czern.) plants using sensitive in vitro and activity gel assays. Phosphorus (P) starvation induced two APases in Indian mustard roots, only one of which was secreted. Northern-blot analysis indicated transcriptional regulation of APase expression. Polymerase chain reaction and Southern-blot analyses revealed two APase homologs in Indian mustard, whereas in Arabidopsis, only one APase homolog was detected. The Arabidopsis APase promoter region was cloned and fused to the beta-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS expression was first evident in leaves of the P-starved Arabidopsis plants. In P-starved roots, the expression of GUS initiated in lateral root meristems followed by generalized expression throughout the root. GUS expression diminished with the addition of P to the medium. Expression of GFP in P-starved roots also initiated in the lateral root meristems and the recombinant GFP with the APase signal peptide was secreted by the roots into the medium. The APase promoter was specifically activated by low P levels. The removal of other essential elements or the addition of salicylic or jasmonic acids, known inducers of gene expression, did not activate the APase promoter. This novel APase promoter may be used as a plant-inducible gene expression system for the production of recombinant proteins and as a tool to study P metabolism in plants.


Assuntos
Fosfatase Ácida/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Regiões Promotoras Genéticas , Sequência de Bases , Brassica/enzimologia , Brassica/genética , Clonagem Molecular , Primers do DNA/genética , DNA de Plantas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , RNA de Plantas/genética
2.
Plant Physiol ; 123(2): 487-96, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10859179

RESUMO

Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.


Assuntos
Apoptose/efeitos dos fármacos , Ciclopentanos/metabolismo , Ozônio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Árvores/efeitos dos fármacos , Hibridização Genética , Marcação In Situ das Extremidades Cortadas , Oxilipinas , Árvores/citologia , Árvores/metabolismo
3.
Plant Physiol ; 114(1): 79-88, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-12223690

RESUMO

The possible role of the octadecanoid signaling pathway with jasmonic acid (JA) as the central component in defense-gene regulation of pathogen-attacked rice was studied. Rice (Oryza sativa L.) seedlings were treated with JA or inoculated with the rice blast fungus Magnaporthe grisea (Hebert) Barr., and gene-expression patterns were compared between the two treatments. JA application induced the accumulation of a number of pathogenesis-related (PR) gene products at the mRNA and protein levels, but pathogen attack did not enhance the levels of (-)-JA during the time required for PR gene expression. Pathogen-induced accumulation of PR1-like proteins was reduced in plants treated with tetcyclacis, a novel inhibitor of jasmonate biosynthesis. There was an additive and negative interaction between JA and an elicitor from M. grisea with respect to induction of PR1-like proteins and of an abundant JA-and wound-induced protein of 26 kD, respectively. Finally, activation of the octadecanoid signaling pathway and induction of a number of PR genes by exogenous application of JA did not confer local acquired resistance to rice. The data suggest that accumulation of nonconjugated (-)-JA is not necessary for induction of PR genes and that JA does not orchestrate localized defense responses in pathogen-attacked rice. Instead, JA appears to be embedded in a signaling network with another pathogen-induced pathway(s) and may be required at a certain minimal level for induction of some PR genes.

4.
Plant Cell ; 8(11): 1991-2001, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12239372

RESUMO

The hypersensitive response (HR) of plants to invading pathogens is thought to involve a coordinated activation of plant defense mechanisms and programmed cell death (pcd). To date, little is known about the mechanism underlying death of plant cells during this response. In addition, it is not known whether suppression of pcd affects the induction of other defense mechanisms during the HR. Here, we report that death of tobacco cells (genotype NN) infected with tobacco mosaic virus (TMV) is inhibited at low oxygen pressure. In contrast, virus replication and activation of defense mechanisms, as measured by synthesis of the pathogenesis-related protein PR-1a, were not inhibited at low oxygen pressure. Bacterium-induced pcd was also inhibited at low oxygen pressure. However, pcd induced by TMV or bacteria was not inhibited in transgenic tobacco plants expressing the mammalian anti-pcd protein Bcl-XL. Our results suggest that ambient oxygen levels are required for efficient pcd induction during the HR of plants and that activation of defense responses can be uncoupled from cell death. Furthermore, pcd that occurs during the interaction of tobacco with TMV or bacteria may be distinct from some cases of pcd or apoptosis in animals that are insensitive to low oxygen or inhibited by the Bcl-XL protein.

5.
Plant Physiol ; 108(2): 633-639, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12228500

RESUMO

Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 [mu]g/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However, leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to [beta]-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...