Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; : e0027024, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023271

RESUMO

Bordetella pertussis, the bacterium responsible for whooping cough, remains a significant public health challenge despite the existing licensed pertussis vaccines. Current acellular pertussis vaccines, though having favorable reactogenicity and efficacy profiles, involve complex and costly production processes. In addition, acellular vaccines have functional challenges such as short-lasting duration of immunity and limited antigen coverage. Filamentous hemagglutinin (FHA) is an adhesin of B. pertussis that is included in all multivalent pertussis vaccine formulations. Antibodies to FHA have been shown to prevent bacterial attachment to respiratory epithelial cells, and T cell responses to FHA facilitate cell-mediated immunity. In this study, FHA's mature C-terminal domain (MCD) was evaluated as a novel vaccine antigen. MCD was conjugated to virus-like particles via SpyTag-SpyCatcher technology. Prime-boost vaccine studies were performed in mice to characterize immunogenicity and protection against the intranasal B. pertussis challenge. MCD-SpyVLP was more immunogenic than SpyTag-MCD antigen alone, and in Tohama I strain challenge studies, improved protection against challenge was observed in the lungs at day 3 and in the trachea and nasal wash at day 7 post-challenge. Furthermore, a B. pertussis strain encoding genetically inactivated pertussis toxin was used to evaluate MCD-SpyVLP vaccine immunity. Mice vaccinated with MCD-SpyVLP had significantly lower respiratory bacterial burden at both days 3 and 7 post-challenge compared to mock-vaccinated animals. Overall, these data support the use of SpyTag-SpyCatcher VLPs as a platform for use in vaccine development against B. pertussis and other pathogens.

2.
PLoS One ; 19(2): e0297758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324578

RESUMO

Research on neutrophil biology has been limited by the short life span and limited genetic manipulability of these cells, driving the need for representative and efficient model cell lines. The promyelocytic cell line HL-60 and its subline PLB-985 can be differentiated into neutrophil-like cells (NLCs) and have been used to study neutrophil functions including chemotaxis, phagocytosis, endocytosis, and degranulation. Compared to neutrophils derived from hematopoietic stem cells, NLCs serve as a cost-effective neutrophil model. NLCs derived from both HL-60 and PLB-985 cells have been shown to perform degranulation, an important neutrophil function. However, no study has directly compared the two lines as models for degranulation including their release of different types of mobilizable organelles. Furthermore, Nutridoma, a commercially available supplement, has recently been shown to improve the chemotaxis, phagocytosis, and oxidative burst abilities of NLCs derived from promyelocytic cells, however it is unknown whether this reagent also improves the degranulation ability of NLCs. Here, we show that NLCs derived from both HL-60 and PLB-985 cells are capable of degranulating, with each showing markers for the release of multiple types of secretory organelles, including primary granules. We also show that differentiating HL-60 cells using Nutridoma does not enhance their degranulation activity over NLCs differentiated using Dimethyl Sulfoxide (DMSO) plus Granulocyte-colony stimulating factor (G-CSF). Finally, we show that promyelocytic cells can be genetically engineered and differentiated using these methods, to yield NLCs with a defect in degranulation. Our results indicate that both cell lines serve as effective models for investigating the mechanisms of neutrophil degranulation, which can advance our understanding of the roles of neutrophils in inflammation and immunity.


Assuntos
Neutrófilos , Fagocitose , Humanos , Neutrófilos/metabolismo , Células HL-60 , Diferenciação Celular/fisiologia , Células Precursoras de Granulócitos , Degranulação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...