Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(3): 112175, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36848287

RESUMO

CD8+ T cell recruitment to the tumor microenvironment is critical for the success of adoptive cell therapy (ACT). Unfortunately, only a small fraction of transferred cells home to solid tumors. Adhesive ligand-receptor interactions have been implicated in CD8+ T cell homing; however, there is a lack of understanding of how CD8+ T cells interact with tumor vasculature-expressed adhesive ligands under the influence of hemodynamic flow. Here, the capacity of CD8+ T cells to home to melanomas is modeled ex vivo using an engineered microfluidic device that recapitulates the hemodynamic microenvironment of the tumor vasculature. Adoptively transferred CD8+ T cells with enhanced adhesion in flow in vitro and tumor homing in vivo improve tumor control by ACT in combination with immune checkpoint blockade. These results show that engineered microfluidic devices can model the microenvironment of the tumor vasculature to identify subsets of T cells with enhanced tumor infiltrating capabilities, a key limitation in ACT.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Melanoma/terapia , Melanoma/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral , Linfócitos do Interstício Tumoral
2.
Sci Adv ; 9(8): eabq0435, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827374

RESUMO

Dysfunction of collecting lymphatic vessel pumping is associated with an array of pathologies. S-(-)-Bay K8644 (BayK), a small-molecule agonist of L-type calcium channels, improves vessel contractility ex vivo but has been left unexplored in vivo because of poor lymphatic access and risk of deleterious off-target effects. When formulated within lymph-draining nanoparticles (NPs), BayK acutely improved lymphatic vessel function, effects not seen from treatment with BayK in its free form. By preventing rapid drug access to the circulation, NP formulation also reduced BayK's dose-limiting side effects. When applied to a mouse model of lymphedema, treatment with BayK formulated in lymph-draining NPs, but not free BayK, improved pumping pressure generated by intact lymphatic vessels and tissue remodeling associated with the pathology. This work reveals the utility of a lymph-targeting NP platform to pharmacologically enhance lymphatic pumping in vivo and highlights a promising approach to treating lymphatic dysfunction.


Assuntos
Vasos Linfáticos , Camundongos , Animais , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Modelos Animais de Doenças , Pressão
3.
Nat Commun ; 13(1): 1479, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304456

RESUMO

Due to their autosynchronous roles in shaping the anti-tumor immune response, complex immune regulatory networks acting both locally within the tumor microenvironment as well as in its draining lymph nodes play critical roles in the cancer immunotherapy response. We describe herein a thermosensitive co-polymer hydrogel system formed from biocompatible polymers gelatin and Pluronic® F127 that are widely used in humans to enable the sustained release of a nitric oxide donor and antibody blocking immune checkpoint cytotoxic T-lymphocyte-associated protein-4 for efficient and durable anti-tumor immunotherapy. By virtue of its unique gel formation and degradation properties that sustain drug retention at the tumor tissue site for triggered release by the tumor microenvironment and formation of in situ micelles optimum in size for lymphatic uptake, this rationally designed thermosensitive hydrogel facilitates modulation of two orthogonal immune signaling networks relevant to the regulation of the anti-tumor immune response to improve local and abscopal effects of cancer immunotherapy.


Assuntos
Hidrogéis , Micelas , Humanos , Hidrogéis/química , Imunoterapia , Doadores de Óxido Nítrico , Poloxâmero
4.
Biomaterials ; 279: 121184, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678650

RESUMO

Multiple small molecule immune modulators have been identified as synergistic with immune checkpoint blockade (ICB) in their effects on T lymphocytes, but are limited in their successful application to combination cancer immunotherapy due to their short in vivo retention and lack of affinity for T cells. We engineered an antibody-nanoparticle conjugate (ANC) platform consisting of 30 nm polymer nanoparticles that, due to their size and formulation, efficiently distribute after administration to lymph nodes, tissues highly enriched in lymphocytes that contribute to tumor control mediated by ICB. Displaying monoclonal antibodies against surface-expressed T cell markers, NP delivery in vivo to circulating and lymph node-resident lymphocytes was substantially enhanced, as was delivery of small molecules formulated into the NP by passive encapsulation. Using ICB monoclonal antibodies as both targeting moiety and signal-blocking therapeutic, ANCs improved the local and systemic anti-tumor effects of small molecule TGFß receptor 1 inhibitor and an adenosine 2A antagonist when administered either locoregionally or systemically into the circulation in two syngeneic, aggressive tumor models, slowing tumor growth and prolonging animal survival. As these benefits were lost in the absence of ANC targeting, co-formulation strategies enabling the targeted co-delivery of multiple immunotherapeutics to T lymphocytes have high potential to improve ICB cancer immunotherapy by concurrent inhibition of non-redundant suppressive pathways.


Assuntos
Nanopartículas , Neoplasias , Preparações Farmacêuticas , Animais , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias/tratamento farmacológico , Linfócitos T
5.
Drug Deliv Transl Res ; 11(6): 2328-2343, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34165731

RESUMO

Lymph nodes (LNs) are tissues of the immune system that house leukocytes, making them targets of interest for a variety of therapeutic immunomodulation applications. However, achieving accumulation of a therapeutic in the LN does not guarantee equal access to all leukocyte subsets. LNs are structured to enable sampling of lymph draining from peripheral tissues in a highly spatiotemporally regulated fashion in order to facilitate optimal adaptive immune responses. This structure results in restricted nanoscale drug delivery carrier access to specific leukocyte targets within the LN parenchyma. Herein, a framework is presented to assess the manner in which lymph-derived macromolecules and particles are sampled in the LN to reveal new insights into how therapeutic strategies or drug delivery systems may be designed to improve access to dLN-resident leukocytes. This summary analysis of previous reports from our group assesses model nanoscale fluorescent tracer association with various leukocyte populations across relevant time periods post administration, studies the effects of bioactive molecule NO on access of lymph-borne solutes to dLN leukocytes, and illustrates the benefits to leukocyte access afforded by lymphatic-targeted multistage drug delivery systems. Results reveal trends consistent with the consensus view of how lymph is sampled by LN leukocytes resulting from tissue structural barriers that regulate inter-LN transport and demonstrate how novel, engineered delivery systems may be designed to overcome these barriers to unlock the therapeutic potential of LN-resident cells as drug delivery targets.


Assuntos
Vasos Linfáticos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Leucócitos , Linfonodos
6.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923272

RESUMO

The mechanisms of lymphedema development are not well understood, but emerging evidence highlights the crucial role the immune system plays in driving its progression. It is well known that lymphatic function deteriorates as lymphedema progresses; however, the connection between this progressive loss of function and the immune-driven changes that characterize the disease has not been well established. In this study, we assess changes in leukocyte populations in lymph nodes within the lymphatic drainage basin of the tissue injury site (draining lymph nodes, dLNs) using a mouse tail model of lymphedema in which a pair of draining collecting vessels are left intact. We additionally quantify lymphatic pump function using established near infrared (NIR) lymphatic imaging methods and lymph-draining nanoparticles (NPs) synthesized and employed by our team for lymphatic tissue drug delivery applications to measure lymphatic transport to and resulting NP accumulation within dLNs associated with swelling following surgery. When applied to assess the effects of the anti-inflammatory drug bestatin, which has been previously shown to be a possible treatment for lymphedema, we find lymph-draining NP accumulation within dLNs and lymphatic function to increase as lymphedema progresses, but no significant effect on leukocyte populations in dLNs or tail swelling. These results suggest that ameliorating this loss of lymphatic function is not sufficient to reverse swelling in this surgically induced disease model that better recapitulates the extent of lymphatic injury seen in human lymphedema. It also suggests that loss of lymphatic function during lymphedema may be driven by immune-mediated mechanisms coordinated in dLNs. Our work indicates that addressing both lymphatic vessel dysfunction and immune cell expansion within dLNs may be required to prevent or reverse lymphedema when partial lymphatic function is sustained.


Assuntos
Modelos Animais de Doenças , Leucina/análogos & derivados , Leucócitos/imunologia , Leucotrieno B4/antagonistas & inibidores , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Linfedema/imunologia , Animais , Feminino , Cinética , Leucina/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfonodos/patologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Linfedema/tratamento farmacológico , Linfedema/metabolismo , Linfedema/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteases/farmacologia
7.
Biomaterials ; 265: 120411, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080460

RESUMO

Lymph nodes (LNs) are immune organs housing high concentrations of lymphocytes, making them critical targets for therapeutic immunomodulation in a wide variety of diseases. While there is great interest in targeted drug delivery to LNs, many nanoscale drug delivery carriers have limited access to parenchymal resident immune cells compared to small molecules, limiting their efficacy. Nitric oxide (NO) is a potent regulator of vascular and lymphatic transport and a promising candidate for modulating nanocarrier access to LNs, but its lymphatic accumulation is limited by its low molecular weight and high reactivity. In this work, we employ S-nitrosated nanoparticles (SNO-NP), a lymphatic-targeted delivery system for controlled NO release, to investigate the effect of NO application on molecule accumulation and distribution within the LN. We evaluated the LN accumulation, spatial distribution, and cellular distribution of a panel of fluorescent tracers after intradermal administration alongside SNO-NP or a small molecule NO donor. While SNO-NP did not alter total tracer accumulation in draining lymph nodes (dLNs) or affect active cellular transport of large molecules from the injection site, its application enhanced the penetration of nanoscale 30 nm dextrans into the LN and their subsequent uptake by LN-resident lymphocytes, while nontargeted NO delivery did not. These results further extended to a peptide-conjugated NP drug delivery system, which showed enhanced uptake by B cells and dendritic cells when administered alongside SNO-NP. Together, these results highlight the utility of LN-targeted NO application for the enhancement of nanocarrier access to therapeutically relevant LN-resident immune cells, making NO a potentially useful tool for improving LN drug delivery and immune responses.


Assuntos
Nanopartículas , Óxido Nítrico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Linfonodos
8.
Sci Transl Med ; 12(563)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998971

RESUMO

Systemic administration of immune checkpoint blockade (ICB) monoclonal antibodies (mAbs) can unleash antitumor functions of T cells but is associated with variable response rates and off-target toxicities. We hypothesized that antitumor efficacy of ICB is limited by the minimal accumulation of mAb within tissues where antitumor immunity is elicited and regulated, which include the tumor microenvironment (TME) and secondary lymphoid tissues. In contrast to systemic administration, intratumoral and intradermal routes of administration resulted in higher mAb accumulation within both the TME and its draining lymph nodes (LNs) or LNs alone, respectively. The use of either locoregional administration route resulted in pronounced T cell responses from the ICB therapy, which developed in the secondary lymphoid tissues and TME of treated mice. Targeted delivery of mAb to tumor-draining lymph nodes (TdLNs) alone was associated with enhanced antitumor immunity and improved therapeutic effects compared to conventional systemic ICB therapy, and these effects were sustained at reduced mAb doses and comparable to those achieved by intratumoral administration. These data suggest that locoregional routes of administration of ICB mAb can augment ICB therapy by improving immunomodulation within TdLNs.


Assuntos
Imunoterapia , Neoplasias , Animais , Linfonodos , Camundongos , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral
9.
Adv Funct Mater ; 30(16)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33071710

RESUMO

Despite the approval of oncolytic virus therapy for advanced melanoma, its intrinsic limitations that include the risk of persistent viral infection and cost-intensive manufacturing motivate the development of analogous approaches that are free from the disadvantages of virus-based therapies. Herein, we report a nanoassembly comprised of multivalent host-guest interactions between polymerized paclitaxel (pPTX) and nitric oxide incorporated polymerized ß-cyclodextrin (pCD-pSNO) that through its bioactive components and when used locoregionally recapitulates the therapeutic effects of oncolytic virus. The resultant pPTX/pCD-pSNO exhibits significantly enhanced cytotoxicity, immunogenic cell death, dendritic cell activation and T cell expansion in vitro compared to free agents alone or in combination. In vivo, intratumoral administration of pPTX/pCD-pSNO results in activation and expansion of dendritic cells systemically, but with a corresponding expansion of myeloid-derived suppressor cells and suppression of CD8+ T cell expansion. When combined with antibody targeting cytotoxic T lymphocyte antigen-4 that blunts this molecule's signaling effects on T cells, intratumoral pPTX/pCD-pSNO treatment elicits potent anticancer effects that significantly prolong animal survival. This formulation thus leverages the chemo- and immunotherapeutic synergies of paclitaxel and nitric oxide and suggests the potential for virus-free nanoformulations to mimic the therapeutic action and benefits of oncolytic viruses.

10.
ACS Pharmacol Transl Sci ; 2(5): 293-310, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-32259064

RESUMO

Immunoengineering is a rapidly growing and interdisciplinary field focused on developing tools to study and understand the immune system, then employing that knowledge to modulate immune response for the treatment of disease. Because of its roles in housing a substantial fraction of the body's lymphocytes, in facilitating immune cell trafficking, and direct immune modulatory functions, among others, the lymphatic system plays multifaceted roles in immune regulation. In this review, the potential for biomaterials to be applied to regulate the lymphatic system and its functions to achieve immunomodulation and the treatment of disease are described. Three related processes-lymphangiogenesis, lymphatic vessel contraction, and lymph node remodeling-are specifically explored. The molecular regulation of each process and their roles in pathologies are briefly outlined, with putative therapeutic targets and the lymphatic remodeling that can result from disease highlighted. Applications of biomaterials that harness these pathways for the treatment of disease via immunomodulation are discussed.

11.
J Biomed Mater Res A ; 106(6): 1463-1475, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29352735

RESUMO

Nitric oxide (NO) is a therapeutic implicated for the treatment of diseases afflicting lymphatic tissues, which range from infectious and cardiovascular diseases to cancer. Existing technologies available for NO therapy, however, provide poor bioactivity within lymphatic tissues. In this work, we address this technology gap with a NO encapsulation and delivery strategy leveraging the formation of S-nitrosothiols on lymphatic-targeting pluronic-stabilized, poly(propylene sulfide)-core nanoparticles (SNO-NP). We evaluated in vivo the lymphatic versus systemic delivery of NO resulting from intradermal administration of SNO-NP benchmarked against a commonly used, commercially available small molecule S-nitrosothiol NO donor, examined signs of toxicity systemically as well as localized to the site of injection, and investigated SNO effects on lymphatic transport and NP uptake by lymph node (LN)-resident cells. Donation of NO from SNO-NP, which scaled in proportion to the total administered dose, enhanced LN accumulation by two orders of magnitude without substantially reducing lymphatic transport of NP or the viability and extent of NP uptake by LN-resident cells. Additionally, NO delivery by SNO-NP was accompanied by low-to-negligible NO accumulation in systemic tissues with no apparent inflammation. These results suggest the utility and selectivity of SNO-NP for the targeted treatment of NO-regulated diseases that afflict lymphatic tissues. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1463-1475, 2018.


Assuntos
Sistemas de Liberação de Medicamentos , Linfonodos/metabolismo , Nanopartículas/química , Doadores de Óxido Nítrico/administração & dosagem , Polímeros/química , S-Nitrosotióis/administração & dosagem , Sulfetos/química , Animais , Distinções e Prêmios , Georgia , Camundongos Endogâmicos C57BL , Doadores de Óxido Nítrico/farmacocinética , S-Nitrosotióis/farmacocinética , Sociedades Científicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...