Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(36): 15050-15058, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37671581

RESUMO

The ability to control single molecule electronic conductance is imperative for achieving functional molecular electronics applications such as insulation, switching, and energy conversion. Quantum interference (QI) effects are generally used to control electronic transmission through single molecular junctions by tuning the molecular structure or the position of the anchoring group(s) in the molecule. While previous studies focussed on the QI between σ and/or π channels of the molecular backbone, here, we show that single molecule electronic devices can be designed based on QI effects originating from the interactions of anchoring groups. Furthermore, while previous studies have concentrated on the QI mostly in conjugated/cyclic systems, our study showcases that QI effects can be harnessed even in the simplest acyclic aliphatic systems-alkanedithiols, alkanediamines, and alkanediselenols. We identify band gap state resonances in the transmission spectrum of these molecules whose positions and intensities depend on the chain length, and anchoring group sensitive QI between the nearly degenerate molecular orbitals localized on the anchoring groups. We predict that these QI features can be harnessed through an external mechanical stimulus to tune the charge transport properties of single molecules in the break-junction experiments.

2.
Langmuir ; 35(28): 9101-9114, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30365890

RESUMO

Harnessing solar energy effectively by the judicious use of photoactive inorganic/hybrid structures has become a pivotal requirement in the pursuit of environmentally benign technologies. The synthesis of new inorganic materials whose stoichiometry, structure, and activity can be tuned while maintaining a high level of architectural homogeneity and the successful evaluation of each material as a viable component in specific energy-capture- and storage-based applications are being presented here. Two of our current projects are detailed, involving (i) new 1D-structured hybrid perovskite that is a more temporally and thermally stable analogue of the oft-cited methylammonium lead iodide and (ii) a new electroactive material that can function not only as a conventional electrode in a battery but also, because of the material's inherent photoactivity, as a component in solar batteries. Hence, the concept that energy capture and energy storage can be coupled in a single device is also being detailed.

3.
Chem Sci ; 8(2): 1576-1591, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451287

RESUMO

Controlling charge flow in single molecule circuits with multiple electrical contacts and conductance pathways is a much sought after goal in molecular electronics. In this joint experimental and theoretical study, we advance the possibility of creating single molecule breadboard circuits through an analysis of the conductance of a bis-terpyridine based molecule (TP1). The TP1 molecule can adopt multiple conformations through relative rotations of 7 aromatic rings and can attach to electrodes in 61 possible single and multi-terminal configurations through 6 pyridyl groups. Despite this complexity, we show that it is possible to extract well defined conductance features for the TP1 breadboard and assign them rigorously to the underlying constituent circuits. Mechanically controllable break-junction (MCBJ) experiments on the TP1 molecular breadboard show an unprecedented 4 conductance states spanning a range 10 -2G0 to 10 -7G0. Quantitative theoretical examination of the conductance of TP1 reveals that combinations of 5 types of single terminal 2-5 ring subcircuits are accessed as a function of electrode separation to produce the distinct conductance steps observed in the MCBJ experiments. We estimate the absolute conductance for each single terminal subcircuit and its percentage contribution to the 4 experimentally observed conductance states. We also provide a detailed analysis of the role of quantum interference and thermal fluctuations in modulating conductance within the subcircuits of the TP1 molecular breadboard. Finally, we discuss the possible development of molecular circuit theory and experimental advances necessary for mapping conductance through complex single molecular breadboard circuits in terms of their constituent subcircuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...