Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429164

RESUMO

SARS-CoV-2 has infected millions of people globally and continues to undergo evolution. Emerging variants can be partially resistant to vaccine induced immunity and therapeutic antibodies, emphasizing the urgent need for accessible, broad-spectrum therapeutics. Here, we report a comprehensive study of ensovibep, the first trispecific clinical DARPin candidate, that can simultaneously engage all three units of the spike protein trimer to potently inhibit ACE2 interaction, as revealed by structural analyses. The cooperative binding of the individual modules enables ensovibep to retain inhibitory potency against all frequent SARS-CoV-2 variants, including Omicron BA.1 and BA.2, as of February 2022. Moreover, viral passaging experiments show that ensovibep, when used as a single agent, can prevent development of escape mutations comparably to a cocktail of monoclonal antibodies (mAb). Finally, we demonstrate that the very high in vitro antiviral potency also translates into significant therapeutic protection and reduction of pathogenesis in Roborovski dwarf hamsters infected with either the SARS-CoV-2 wild-type or the Alpha variant. In this model, ensovibep prevents fatality and provides substantial protection equivalent to the standard of care mAb cocktail. These results support further clinical evaluation and indicate that ensovibep could be a valuable alternative to mAb cocktails and other treatments for COVID-19.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-256339

RESUMO

Globally accessible therapeutics against SARS-CoV-2 are urgently needed. Here, we report the generation of the first anti-SARS-CoV-2 DARPin molecules with therapeutic potential as well as rapid large-scale production capabilities. Highly potent multivalent DARPin molecules with low picomolar virus neutralization efficacies were generated by molecular linkage of three different monovalent DARPin molecules. These multivalent DARPin molecules target various domains of the SARS-CoV-2 spike protein, thereby limiting possible viral escape. Cryo-EM analysis of individual monovalent DARPin molecules provided structural explanations for the mode of action. Analysis of the protective efficacy of one multivalent DARPin molecule in a hamster SARS-CoV-2 infection model demonstrated a significant reduction of pathogenesis. Taken together, the multivalent DARPin molecules reported here, one of which has entered clinical studies, constitute promising therapeutics against the COVID-19 pandemic.

3.
Hawaii J Med Public Health ; 73(11 Suppl 2): 7-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25478294

RESUMO

High altitude clinical syndromes have been described in the medical literature but may be under recognized in the state of Hawai'i. As tourism increases, high altitude injuries may follow given the easy access to high altitude attractions. Visitors and clinicians should be aware of the dangers associated with the rapid ascent to high altitudes in the perceived comfort of a vehicle. This paper will review the basic pathophysiology, prevention, and treatment of the most serious of the high altitude clinical syndromes, high altitude pulmonary edema.


Assuntos
Doença da Altitude/prevenção & controle , Doença da Altitude/terapia , Hipertensão Pulmonar/prevenção & controle , Hipertensão Pulmonar/terapia , Havaí , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...