Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 295: 119867, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989010

RESUMO

A novel method is reported for the preparation of a hybrid gibbsite-cellulose nanofibril (CNF) nanocomposite film with improved wet and dry mechanical properties and barrier properties. A gibbsite and cationic CNF dispersion was dewatered at pH 7 to prepare well-ordered films. Thereafter, the charge on gibbsite was reversed by dipping the film in pH 12 water to induce an ionic interaction between CNFs and gibbsite, enhancing the film properties; modulus improved from 9 GPa to 12 GPa, with a maintained strain-at-break of 6 % and tensile strength of 190 MPa. Additionally, the charge-reversed film swelled a factor of 24 less than a film without any gibbsite. At 23 °C and 80 % RH, the oxygen barrier properties were improved by a factor of 28, to a value of 18 ml·µm·m-2·kPa-1·24 h-1 and the water vapour barrier properties were improved by a factor of 12, to a value of 105 g·µm·m-2·kPa-1·24 h-1.


Assuntos
Nanocompostos , Nanofibras , Celulose/química , Nanocompostos/química , Nanofibras/química , Vapor , Resistência à Tração
2.
ACS Omega ; 6(29): 19038-19044, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337242

RESUMO

Dewatering in the preparation of cellulose nanopapers can take up to a few hours, which is a notable bottleneck in the commercialization of nanopapers. As a solution, we report a filtration-free method that is capable of preparing lactic acid-modified cellulose nanopapers within a few minutes. The bleached cellulose nanofibers (CNFs), obtained using a Masuko grinder, were functionalized by sonication-assisted lactic acid modification and centrifuged at 14 000 rpm to achieve a doughlike, concentrated mass. The concentrated CNFs were rolled into a wet sheet and dried in a vacuum drier to obtain nanopapers. The nanopaper preparation time was 10 min, which is significantly faster than the earlier time period reported in the literature (up to a few hours of preparation time). The mechanical properties of nanopaper were comparable to the previous values reported for nanopapers. In addition, the method was successfully used to prepare highly conductive functional nanopapers containing carboxylated multiwalled carbon nanotubes.

4.
Carbohydr Polym ; 203: 148-156, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318198

RESUMO

This study covers a green method to prepare hybrid lignocellulosic nanopapers by combining wood nanofibres (WNFs) and cellulose nanofibres (CNFs). The WNFs and CNFs behave synergistically to compensate for the drawbacks of each other resulting in enhanced hybrid nanopapers. The draining time of hybrid nanopapers was improved by up to 75% over CNF nanopaper, and the mechanical properties, modulus, strength and elongation, were respectively improved up to 35%, 90% and 180% over WNF nanopaper. Additionally, the water resistance of hybrid nanopapers was considerably improved with a water contact angle of 95°; the neat CNF nanopaper had a contact angle of 52°. The morphology of nanopapers, studied by electron microscopy, indicated that lignin acts as a matrix, which binds the nanofibres together and makes them impervious to external environmental factors, such as high humidity. The reported hybrid nanopapers are 100% bio-based, prepared by a simple and environmentally friendly processing route. Reported hybrid nanopapers can be used in novel applications such as gas barrier membranes and printable electronics.

5.
Heliyon ; 4(9): e00787, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30225381

RESUMO

In this paper, we propose and verify a theoretical model of the development of dispersion quality of aqueous carbon nanotube (CNT) colloid as a function of sonochemical yield of the sonication process. Four different surfactants; Triton X-100, Pluronic F-127, CTAB and SDS were studied. From these four SDS had the lowest dispersion performance which was surprising. Optical dispersion quality results fits well with proposed theoretical model.

6.
Macromolecules ; 51(5): 1822-1829, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30258254

RESUMO

A furan-based synthetic biopolymer composed of a bifuran monomer and ethylene glycol was synthesized through melt polycondensation, and the resulting polyester was found to have promising thermal and mechanical properties. The bifuran monomer, dimethyl 2,2'-bifuran-5,5'-dicarboxylate, was prepared using a palladium-catalyzed, phosphine ligand-free direct coupling protocol. A titanium-catalyzed polycondensation procedure was found effective at polymerizing the bifuran monomer with ethylene glycol. The prepared bifuran polyester exhibited several intriguing properties including high tensile modulus. In addition, the bifuran monomer furnished the polyester with a relatively high glass transition temperature. Films prepared from the new polyester also had excellent oxygen and water barrier properties, which were found to be superior to those of poly(ethylene terephthalate). Moreover, the novel polyester also has good ultraviolet radiation blocking properties.

7.
Carbohydr Polym ; 199: 286-293, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143131

RESUMO

Cellulose nanopapers, known for excellent mechanical properties, loses 90% of their stiffness in the wet conditions. In this study, we attempt to improve the wet mechanical properties of cellulose nanopaper by incorporating polyurethane by a novel and ecofriendly method. Water based PU was dispersed along with CNFs in water and hybrid nanopapers were prepared by draining water under vacuum followed by forced drying. These hybrid nanopapers have a gradient interpenetrating structure with PU concentrated towards one side and CNFs towards the other, which was confirmed by scanning electron microscopy, x-ray photoelectron spectroscopy and contact angle measurements. Because of this, the nanopapers are water resistant on one surface (PU rich side) and hydrophilic on the other (cellulose rich side), making them stereoselectively water resistant. When wetted with water on the PU side, the hybrid nanopaper with 10% PU is able to retain 65% modulus; on the other hand, the reference retains only 10% of the modulus. Similar results are seen in the tensile and the yield strength. Additionally, the hybrid nanopapers have higher elongation and improved thermal stability. The reported material is relevant to the applications such as flexible electronics and transparent displays.

8.
Carbohydr Polym ; 197: 92-99, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007663

RESUMO

This paper addresses the issue of high water retention by cellulose nanofibers (CNFs) that lead to exorbitant time consumption in the dewatering of CNF suspensions. This has been a bottleneck, which is restricting the commercialization of CNF derived products such as nanopapers and CNF reinforced paper sheets. As a remedy, we suggest an eco-friendly water-based approach that involves the use of sonication energy and lactic acid (LA) to modify the surface of CNFs. The suggested modification resulted in rapid water drainage, and dewatering was completed in 10 min; with unmodified CNFs, it took around 45 min. We have also compared the draining characteristics of LA modification of CNF suspensions with a common draining agent (NaCl); LA modification drains water 56% faster than the use of NaCl, and produced mechanically superior dimensionally stable nanopaper. Additionally, LA modification allows the addition of 10 wt.% CNF in paper sheets, with dewatering done in 2 min (while the unmodified CNFs took 23 min).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...