Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(27): e2401131, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38563587

RESUMO

Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.

2.
Nanoscale Adv ; 3(14): 4235-4243, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132838

RESUMO

Conventional fire-retardant composite coatings are typically made of organic-based materials that reduce flame spread rates. However, the associated chemical reactions and starting precursors produce toxic and hazardous gases, affecting the environment and contributing to climate change. Wood is one of the most common materials used in construction and households, and thin-film fire-retardant coatings are needed to protect it from fire. Here, we derive high-performance nanocomposite paint-based coatings from naturally occurring and highly insulating layered vermiculite. The coatings are made using different weight percentages of shear-exfoliated vermiculite nanosheets in an epoxy matrix and are brush-coated onto teak wood. A series of tests using coated wooden rods and standard fire retardancy tests confirm a reduction in flame spread and combustion velocity with minimal toxic smoke release. Samples coated with the vermiculite/epoxy nanocomposite paint resist fire propagation, and post-combustion analysis indicates their resistance to thermal degradation. Our results offer a novel and eco-efficient solution to minimize the flame propagation rate, enhancing char development, and expand the scope of applications of ultra-thin vermiculite in nanocomposite coatings as a fire retardant, exploiting its low thermal conductivity in thermal insulation systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...