Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610527

RESUMO

Electrothermal piezoresistive resonant cantilever sensors have been fabricated with embedded actuating (heating resistor) and sensing (piezo resistors) parts, with the latter configured in a Wheatstone bridge circuit. Due to the close spacing between these two elements, a direct thermal parasitic effect on the resonant sensor during the actuating-sensing process leads to asymmetric amplitude and reversing phase spectral responses. Such a condition affects the precise determination of the cantilever's resonant frequency, f0. Moreover, in the context of phase-locked loop-based (PLL) resonance tracking, a reversing phase spectral response hinders the resonance locking due to its ambiguity. In this work, a replica of the baseline spectral was applied to remove the thermal parasitic effect on the resonance spectra of the cantilever sensor, and its capability was simulated through mathematical analysis. This replica spectral was subtracted from the parasitized spectral using a particular calculation, resulting in optimized spectral responses. An assessment using cigarette smoke particles performed a desired spectral shifting into symmetrical amplitude shapes and monotonic phase transitions, subsequently allowing for real-time PLL-based frequency tracking.

2.
Appl Opt ; 61(13): 3786-3792, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256421

RESUMO

Macrobending-based fiber optic sensors are constructed to measure load. Two sensor models are investigated to find a better linearity response; i.e., narrow helix-shaped and wide helix-shaped sensors. The sensing mechanism of those sensors is due to a macrobending loss of the traveling light inside the optical fibers. This work employs a distributed feedback laser diode and a Ge-based photodetector as the light source and the light loss detector, respectively. The results indicated that the linear response to a static-load exposure apparently can be improved by spacing the coiled fiber on the silicon rubber at a specific diameter. Several investigations reveal the optimum diameter and fiber spacing to design an accurate fiber optic based sensor for load measurement. A sensitivity of 398V/kg/cm2 and 100V/kg/cm2 are obtained on a diameter of 25 mm and 38 mm cylindrical rubber with fiber spacing of 15 mm. Furthermore, an assessment under a dynamic object can exhibit uniform responses presenting minor deviations.


Assuntos
Borracha , Silício , Desenho de Equipamento , Tecnologia de Fibra Óptica , Fibras Ópticas
3.
Sensors (Basel) ; 21(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198533

RESUMO

An electrothermal piezoresistive cantilever (EPC) sensor is a low-cost MEMS resonance sensor that provides self-actuating and self-sensing capabilities. In the platform, which is of MEMS-cantilever shape, the EPC sensor offers several advantages in terms of physical, chemical, and biological sensing, e.g., high sensitivity, low cost, simple procedure, and quick response. However, a crosstalk effect is generated by the coupling of parasitic elements from the actuation part to the sensing part. This study presents a parasitic feedthrough subtraction (PFS) method to mitigate a crosstalk effect in an electrothermal piezoresistive cantilever (EPC) resonance sensor. The PFS method is employed to identify a resonance phase that is, furthermore, deployed to a phase-locked loop (PLL)-based system to track and lock the resonance frequency of the EPC sensor under cigarette smoke exposure. The performance of the EPC sensor is further evaluated and compared to an AFM-microcantilever sensor and a commercial particle counter (DC1100-PRO). The particle mass-concentration measurement result generated from cigarette-smoke puffs shows a good agreement between these three detectors.


Assuntos
Sistemas Microeletromecânicos , Fumar
4.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354176

RESUMO

Liquid-borne particles sampling and cantilever-based mass detection are widely applied in many industrial and scientific fields e.g., in the detection of physical, chemical, and biological particles, and disease diagnostics, etc. Microscopic analysis of particles-adsorbed cantilever-samples can provide a good basis for measurement comparison. However, when a particles-laden droplet on a solid surface is vaporized, a cluster-ring deposit is often yielded which makes particles counting difficult or impractical. Nevertheless, in this study, we present an approach, i.e., on-cantilever particles imprinting, which effectively defies such odds to sample and deposit countable single particles on a sensing surface. Initially, we designed and fabricated a triangular microcantilever sensor whose mass m0, total beam-length L, and clamped-end beam-width w are equivalent to that of a rectangular/normal cantilever but with a higher resonant frequency (271 kHz), enhanced sensitivity (0.13 Hz/pg), and quality factor (~3000). To imprint particles on these cantilever sensors, various calibrated stainless steel dispensing tips were utilized to pioneer this study by dipping and retracting each tip from a small particle-laden droplet (resting on a hydrophobic n-type silicon substrate), followed by tip-sensor-contact (at a target point on the sensing area) to detach the solution (from the tip) and adsorb the particles, and ultimately determine the particles mass concentration. Upon imprinting/adsorbing the particles on the sensor, resonant frequency response measurements were made to determine the mass (or number of particles). A minimum detectable mass of ~0.05 pg was demonstrated. To further validate and compare such results, cantilever samples (containing adsorbed particles) were imaged by scanning electron microscopy (SEM) to determine the number of particles through counting (from which, the lowest count of about 11 magnetic polystyrene particles was obtained). The practicality of particle counting was essentially due to monolayer particle arrangement on the sensing surface. Moreover, in this work, the main measurement process influences are also explicitly examined.

5.
Sensors (Basel) ; 20(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979161

RESUMO

In this study, we investigate the performance of two piezoresistive micro-electro-mechanical system (MEMS)-based silicon cantilever sensors for measuring target analytes (i.e., ultrafine particulate matters). We use two different types of cantilevers with geometric dimensions of 1000 × 170 × 19.5 µm3 and 300 × 100 × 4 µm3, which refer to the 1st and 2nd types of cantilevers, respectively. For the first case, the cantilever is configured to detect the fundamental in-plane bending mode and is actuated using a resistive heater. Similarly, the second type of cantilever sensor is actuated using a meandering resistive heater (bimorph) and is designed for out-of-plane operation. We have successfully employed these two cantilevers to measure and monitor the changes of mass concentration of carbon nanoparticles in air, provided by atomizing suspensions of these nanoparticles into a sealed chamber, ranging from 0 to several tens of µg/m3 and oversize distributions from ~10 nm to ~350 nm. Here, we deploy both types of cantilever sensors and operate them simultaneously with a standard laboratory system (Fast Mobility Particle Sizer, FMPS, TSI 3091) as a reference.

6.
Sensors (Basel) ; 19(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683973

RESUMO

Cantilever-based sensors have attracted considerable attention in the recent past due to their enormous and endless potential and possibilities coupled with their dynamic and unprecedented sensitivity in sensing applications. In this paper, we present a technique that involves depositing and vaporizing (at ambient conditions) a particle-laden water droplet onto a defined sensing area on in-house fabricated and commercial-based silicon microcantilever sensors. This process entailed the optimization of dispensing pressure and time to generate and realize a small water droplet volume (Vd = 49.7 ± 1.9 pL). Moreover, we monitored the water evaporation trends on the sensing surface and observed total evaporation time per droplet of 39.0 ± 1.8 s against a theoretically determined value of about 37.14 s. By using monodispersed particles in water, i.e., magnetic polystyrene particles (MPS) and polymethyl methacrylate (PMMA), and adsorbing them on a dynamic cantilever sensor, the mass and number of these particles were measured and determined comparatively using resonant frequency response measurements and SEM particle count analysis, respectively. As a result, we observed and reported monolayer particles assembled on the sensor with the lowest MPS particles count of about 19 ± 2.

7.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795547

RESUMO

In this paper, a self-out-readable, miniaturized cantilever resonator for highly sensitive airborne nanoparticle (NP) detection is presented. The cantilever, which is operated in the fundamental in-plane resonance mode, is used as a microbalance with femtogram resolution. To maximize sensitivity and read-out signal amplitude of the piezo-resistive Wheatstone half bridge, the geometric parameters of the sensor design are optimized by finite element modelling (FEM). The electrical read-out of the cantilever movement is realized by piezo-resistive struts at the sides of the cantilever resonator that enable real-time tracking using a phase-locked loop (PLL) circuit. Cantilevers with minimum resonator mass of 1.72 ng and resonance frequency of ~440 kHz were fabricated, providing a theoretical sensitivity of 7.8 fg/Hz. In addition, for electrostatic NP collection, the cantilever has a negative-biased electrode located at its free end. Moreover, the counter-electrode surrounding the cantilever and a µ-channel, guiding the particle-laden air flow towards the cantilever, are integrated with the sensor chip. µ-channels and varying sampling voltages will also be used to accomplish particle separation for size-selective NP detection. To sum up, the presented airborne NP sensor is expected to demonstrate significant improvements in the field of handheld, micro-/nanoelectromechanical systems (M/NEMS)-based NP monitoring devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...