Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Struct Chem ; 33(5): 1585-1608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938064

RESUMO

The unprecedented outbreak of the severe acute respiratory syndrome (SARS) Coronavirus-2, across the globe, triggered a worldwide uproar in the search for immediate treatment strategies. With no specific drug and not much data available, alternative approaches such as drug repurposing came to the limelight. To date, extensive research on the repositioning of drugs has led to the identification of numerous drugs against various important protein targets of the coronavirus strains, with hopes of the drugs working against the major variants of concerns (alpha, beta, gamma, delta, omicron) of the virus. Advancements in computational sciences have led to improved scope of repurposing via techniques such as structure-based approaches including molecular docking, molecular dynamic simulations and quantitative structure activity relationships, network-based approaches, and artificial intelligence-based approaches with other core machine and deep learning algorithms. This review highlights the various approaches to repurposing drugs from a computational biological perspective, with various mechanisms of action of the drugs against some of the major protein targets of SARS-CoV-2. Additionally, clinical trials data on potential COVID-19 repurposed drugs are also highlighted with stress on the major SARS-CoV-2 targets and the structural effect of variants on these targets. The interaction modelling of some important repurposed drugs has also been elucidated. Furthermore, the merits and demerits of drug repurposing are also discussed, with a focus on the scope and applications of the latest advancements in repurposing.

3.
Environ Sci Pollut Res Int ; 24(9): 8443-8457, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28188552

RESUMO

The current study aimed to devise eco-friendly, safe, and cost-effective strategies for enhanced degradation of low- and high-density polyethylene (LDPE and HDPE) using newly formulated thermophilic microbial consortia from cow dung and to assess the biodegradation end products. The plastic-degrading bacteria from cow dung samples gathered from highly plastic-acclimated environments were enriched by standard protocols. The degradation ability was comprehended by zone of clearance method, and the percentage of degradation was monitored by weight reduction process. The best isolates were characterized by standard microbiological and molecular biology protocols. The best isolates were employed to form several combinations of microbial consortia, and the degradation end products were analyzed. The stability of 16S ribosomal DNA (rDNA) was predicted by bioinformatics approach. This study identified 75 ± 2, 55 ± 2, 60 ± 3, and 43 ± 3% degradation for LDPE strips, pellets, HDPE strips, and pellets, respectively, for a period of 120 days (p < 0.05) at 55 °C by the formulated consortia of IS1-IS4, and the degradation efficiency was found to be better in comparison with other formulations. The end product analysis by Fourier transform infrared, scanning electron microscopy, energy-dispersive spectroscopy, and nuclear magnetic resonance showed major structural changes and formation of bacterial biofilm on plastic surfaces. These novel isolates were designated as Bacillus vallismortis bt-dsce01, Psuedomonas protegens bt-dsce02, Stenotrophomonas sp. bt-dsce03, and Paenibacillus sp.bt-dsce04 by 16S rDNA sequencing and suggested good gene stability with minimum Gibb's free energy. Therefore, this study imparts substantial information regarding the utilization of these thermophilic microbial consortia from cow dung for rapid polyethylene removal.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Fezes , Consórcios Microbianos , Polietileno/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Animais , Biofilmes , Bovinos , DNA Ribossômico/genética , Feminino , Plásticos/análise , Polietileno/química , RNA Ribossômico 16S/genética , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...