Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(44): 16500-16512, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37877222

RESUMO

While most of the reports on NH3 gas sensors are either based on metal oxide composites with other 2D materials, polymers or noble metals or involve multi-step-based synthesis routes, this work is the first report on a pristine ternary metal oxide, 2D NiCo2ZnO4 nanoflake based room-temperature (RT) NH3 gas sensor. The 2D NiCo2ZnO4 nanoflakes were prepared by a one-step hydrothermal method. FESEM and TEM images displayed micro-flower like morphologies, containing vertically aligned interwoven porous 2D nanoflakes, whereas XPS and XRD data confirmed the successful growth of this ternary metal-oxide. This sensor revealed a good response, repeatability, linearity (R2 = 0.9976), a low detection limit of 3.024 ppb, and a response time of 74.84 s with excellent selectivity towards NH3 over six other VOCs. This improved performance of the sensor is ascribed to its large specific surface area (127.647 m2 g-1) resulting from the 2D nanoflake like structure, good electronic conductivity, variable valence states and abundant surface-active oxygen of NiCo2ZnO4. Thus, this highly selective 2D NiCo2ZnO4 based RT NH3 gas sensor can be an attractive solution for the fabrication of next-generation NH3 gas sensors.

2.
Sci Rep ; 13(1): 8159, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208351

RESUMO

Uncontrolled human and industrial activities lead to the increase in demand for selective gas sensors for detection of poisonous gases in our environment. Conventional resistive gas sensors suffer from predetermined sensitivity and poor selectivity among gases. This paper demonstrates curcumin reduced graphene oxide-silk field effect transistor for selective and sensitive detection of ammonia in air. The sensing layer was characterized by X-ray diffraction, FESEM and HRTEM to confirm its structural and morphological features. Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy was carried out to analyze the functional moieties present in the sensing layer. Curcumin reduced graphene oxide introduces sufficient hydroxyl groups in the sensing layer to provide high degree of selectivity towards ammonia vapors. The performance of the sensor device was evaluated at positive, negative and zero gate voltage. Carrier modulation in the channel through gate electrostatics revealed that the minority carriers (electrons) in p-type reduced graphene oxide plays a pivotal role in enhancement of sensitivity of the sensor device. The sensor response was enhanced to 634% for 50 ppm ammonia at 0.6 V gate voltage compared to 23.2% and 39.3% at 0 V and - 3 V respectively. The sensor exhibited faster response and recovery at 0.6 V owing to higher mobility of electrons and quick charge transfer mechanism. The sensor exhibited satisfactory humidity resistant characteristics and high stability. Hence, curcumin reduced graphene oxide-silk field effect transistor device with proper gate bias elucidates excellent ammonia detection and may be a potential candidate for future room temperature, low power, portable gas detection system.

3.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054912

RESUMO

At present, the potential role of the AgNPs/endo-fullerene molecule metal nano-composite has been evaluated over the biosystems in-vitro. The intra-atomic configuration of the fullerene molecule (C60) has been studied in-vitro for the anti-proliferative activity of human breast adenocarcinoma (MDA-MB-231) cell lines and antimicrobial activity against a few human pathogens that have been augmented with the pristine surface plasmonic electrons and antibiotic activity of AgNPs. Furthermore, FTIR revealed the basic vibrational signatures at ~3300 cm-1, 1023 cm-1, 1400 cm-1 for O-H, C-O, and C-H groups, respectively, for the carbon and oxygen atoms of the C60 molecule. NMR studies exhibited the different footprints and magnetic moments at ~7.285 ppm, explaining the unique underlying electrochemical attributes of the fullerene molecule. Such unique electronic and physico-chemical properties of the caged carbon structure raise hope for applications into the drug delivery domain. The in-vitro dose-dependent application of C60 elicits a toxic response against both the breast adenocarcinoma cell lines and pathogenic microbes. That enables the use of AgNPs decorated C60 endo fullerene molecules to design an effective anti-cancerous drug delivery and antimicrobial agent in the future, bringing a revolutionary change in the perspective of a treatment regime.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Fulerenos/química , Nanopartículas Metálicas/química , Prata/química , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/ultraestrutura , Nanocompostos/química , Análise Espectral
4.
IEEE Trans Nanobioscience ; 21(2): 265-272, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34623271

RESUMO

In this paper, ultra-low level selective detection of bovine serum albumin (BSA) has been demonstrated, based on chemically derived graphene i.e., reduced graphene oxide (RGO) nanosheets. The working principle of the sensor is based upon change in conductance of the RGO nanosheets with different concentration of BSA. The change in conductance is based on the charge transfer between BSA and functional groups of RGO. The morphological and structural characterizations of RGO nanosheets were carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Raman spectroscopy is performed to further validate the interaction between RGO sensing layer and BSA molecules. Electrical impedance spectroscopy is performed to observe the impedance variation when BSA interacts with RGO. The sensor device exhibits sensitivity of 10 nA/pM. The lower limit of detection (LOD) of the sensor is found to be 1 pM and response time around 35 s, confirming very high sensitivity for BSA. All electrical (current-voltage) measurements were carried out at 2 V bias for low power operation. The sensor exhibits highest sensitivity at 30 °C and for RGO thickness ~4 nm. The RGO based sensor device is selective towards BSA when compared to proteins like L-Histidine, HSA, BHB and Biotin. Our results suggest that RGO based devices are promising for low-cost, portable and real time detection of BSA at room temperature.


Assuntos
Grafite , Grafite/química , Limite de Detecção , Microscopia Eletrônica de Transmissão , Soroalbumina Bovina/química
5.
J Mater Sci Mater Med ; 32(12): 151, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894285

RESUMO

This study employed a bottom-up technique to synthesize copper oxide (CuO) nanoparticles over hydrophilic graphene oxide (GO) nanosheets. The CuO/GO nanocomposite has been prepared using two selected precursors of copper nitrate and citric acid with an intermittent mixing of GO solutions. The synthesized Nanocomposites were characterized using different biophysical techniques like FT-IR, NMR, FE-SEM, and HR-TEM analyses. FT-IR analyses confirm the nanocomposites' successful formation, which is evident from the functional groups of C=C, C-O, and Cu-C stretching vibrations. Morphological analyses reveal the depositions of CuO nanoparticles over the planar rough GO sheets, which has been elucidated from the FE-SEM and HR-TEM analyses supported by respective EDAX analyses. The antimicrobial activities have been evident from the surface roughness and damages seen from the FE-SEM analyses. The CuO/GO sheets were tested against Gram-positive (e.g., Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa). It is evident that the intrinsic antibacterial activity of CuO/GO sheets, when combined in equal proportions, elicited a robust antibacterial activity when tested over Gram -ve representative bacteria Escherichia coli. The antioxidant behaviour of synthesized CuO/GO nanocomposite was evaluated by scavenging the free radicals of DPPH and ABTS. Moreover, the cytotoxic activity was also studied against epidermoid carcinoma cell line A-431. A brief mathematical formulation has been proposed in this study to uncover the possibilities of using the nanocomposites as potential drug candidates in theranostic applications in disease treatment and diagnosis. This study would help uncover the electronic properties that play in the nano-scaled system at the material-bio interface, which would aid in designing a sensitive nano-electromechanical device bearing both the therapeutic and diagnostic attributes heralding a new horizon in the health care systems.


Assuntos
Antibacterianos , Antineoplásicos , Cobre/química , Grafite/química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Nanocompostos/química , Nanocompostos/microbiologia , Nanocompostos/uso terapêutico , Nanoestruturas/química , Nanoestruturas/microbiologia , Nanoestruturas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...