Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecohealth ; 17(3): 302-314, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237500

RESUMO

The fungal pathogen, Batrachochytrium dendrobatidis (Bd), has devastated biodiversity and ecosystem health and is implicated as a driver of mass amphibian extinctions. This 100-year study investigates which environmental factors contribute to Bd prevalence in a fully terrestrial species, and determines whether infection patterns differ between a fully terrestrial amphibian and more aquatic host species. We performed a historical survey to quantify Bd prevalence in 1127 Batrachoseps gregarius museum specimens collected from 1920 to 2000, and recent data from 16 contemporary (live-caught) B. gregarius populations from the southwestern slopes of the Sierra Nevada mountains in California, USA. We compared these results to Bd detection rates in 1395 historical and 1033 contemporary specimens from 10 species of anurans and 427 historical Taricha salamander specimens collected throughout the Sierra Nevada mountains. Our results indicate that Bd dynamics in the entirely terrestrial species, B. gregarius, differ from aquatic species in the same region in terms of both seasonal patterns of Bd abundance and in the possible timing of Bd epizootics.


Assuntos
Anfíbios/microbiologia , Batrachochytrium/isolamento & purificação , Ecossistema , Micoses/epidemiologia , Animais , Biodiversidade , California , Quitridiomicetos , Interações Hospedeiro-Patógeno
2.
PLoS One ; 13(3): e0192834, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513695

RESUMO

We summarize thermal-biology data of 69 species of Amazonian lizards, including mode of thermoregulation and field-active body temperatures (Tb). We also provide new data on preferred temperatures (Tpref), voluntary and thermal-tolerance ranges, and thermal-performance curves (TPC's) for 27 species from nine sites in the Brazilian Amazonia. We tested for phylogenetic signal and pairwise correlations among thermal traits. We found that species generally categorized as thermoregulators have the highest mean values for all thermal traits, and broader ranges for Tb, critical thermal maximum (CTmax) and optimal (Topt) temperatures. Species generally categorized as thermoconformers have large ranges for Tpref, critical thermal minimum (CTmin), and minimum voluntary (VTmin) temperatures for performance. Despite these differences, our results show that all thermal characteristics overlap between both groups and suggest that Amazonian lizards do not fit into discrete thermoregulatory categories. The traits are all correlated, with the exceptions of (1) Topt, which does not correlate with CTmax, and (2) CTmin, and correlates only with Topt. Weak phylogenetic signals for Tb, Tpref and VTmin indicate that these characters may be shaped by local environmental conditions and influenced by phylogeny. We found that open-habitat species perform well under present environmental conditions, without experiencing detectable thermal stress from high environmental temperatures induced in lab experiments. For forest-dwelling lizards, we expect warming trends in Amazonia to induce thermal stress, as temperatures surpass the thermal tolerances for these species.


Assuntos
Aclimatação/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Lagartos/fisiologia , Temperatura , Animais , Brasil , Ecossistema , Geografia , Lagartos/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA