Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 10(1): 185, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324140

RESUMO

BACKGROUND: Metagenomic data can be used to profile high-importance genes within microbiomes. However, current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately reconstruct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagenomic DNA, termed target-enriched long-read sequencing (TELSeq). RESULTS: Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile comprising many low-abundance ARGs, including some with public health importance. Using the long reads generated by TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs could be transferred across bacterial taxa via HGT. CONCLUSIONS: TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application. Video abstract.


Assuntos
Antibacterianos , Metagenoma , Animais , Humanos , Metagenoma/genética , Antibacterianos/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Metagenômica/métodos
2.
Comput Struct Biotechnol J ; 19: 4067-4078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377371

RESUMO

MOTIVATION: The de Bruijn graph has become a ubiquitous graph model for biological data ever since its initial introduction in the late 1990s. It has been used for a variety of purposes including genome assembly (Zerbino and Birney, 2008; Bankevich et al., 2012; Peng et al., 2012), variant detection (Alipanahi et al., 2020b; Iqbal et al., 2012), and storage of assembled genomes (Chikhi et al., 2016). For this reason, there have been over a dozen methods for building and representing the de Bruijn graph and its variants in a space and time efficient manner. RESULTS: With the exception of a few data structures (Muggli et al., 2019; Holley and Melsted, 2020; Crawford et al.,2018), compressed and compact de Bruijn graphs do not allow for the graph to be efficiently updated, meaning that data can be added or deleted. The most recent compressed dynamic de Bruijn graph (Alipanahi et al., 2020a), relies on dynamic bit vectors which are slow in theory and practice. To address this shortcoming, we present a compressed dynamic de Bruijn graph that removes the necessity of dynamic bit vectors by buffering data that should be added or removed from the graph. We implement our method, which we refer to as BufBOSS, and compare its performance to Bifrost, DynamicBOSS, and FDBG. Our experiments demonstrate that BufBOSS achieves attractive trade-offs compared to other tools in terms of time, memory and disk, and has the best deletion performance by an order of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...