Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 19(21): 2961-2966, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30126022

RESUMO

Exciton-polaron induced aggregation (EPIA) in organic host materials for blue Phosphorescent Organic Light Emitting Diodes (PhOLEDs) is driven by a non-radiative decay of electronically excited positive polarons resulting in a local heating of the amourphous host matrix. The released heat triggers morphological changes, i. e. molecular aggregation between neighboring host molecules. The resulting aggregates, which our calculations identify as carbazolyl dimers, lead to decreased PhOLED efficiency. Statistical assessment of some host-only morphologies reveals a structure-dependent propensity for molecular aggregation corroborating the identified EPIA mechanism. Our findings provide a fresh look at established molecular design rules and will help to improve blue PhOLED host materials to enhance blue PhOLED device lifetimes.

2.
Dalton Trans ; 46(22): 7194-7209, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28524924

RESUMO

Recently, a successful Brønsted-acid mediated geometric isomerization of the meridional homoleptic carbenic iridium(iii) complexes tris-(N-phenyl,N-methyl-benzimidazol-2-yl)iridium(iii) (1) and tris-(N-phenyl,N-benzyl-benzimidazol-2-yl)iridium(iii) (2) into their facial form has been reported. In the present work the pronounced acid-dependency of this particular isomerization procedure is revisited and additional mechanistic pathways are taken into account. Moreover, the acid-induced material decomposition is addressed. All calculations are carried out using density functional theory (DFT) while the environmental effects in solution are accounted for by the COSMO-RS model. The simulated results clearly reveal the outstanding importance of the complex interplay between acid strength, coordinating power of the corresponding base and the steric influence of the ligand system in contrast to the plain calculation of minimum energy pathways for selected complexes. Eventually, general rules to enhance the material-specific reaction yields are provided.

3.
Chem Commun (Camb) ; 53(23): 3295-3298, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28239727

RESUMO

The first successful meridional to facial isomerization of homoleptic carbenic iridium(iii) complexes is presented. The Brønsted-acid-mediated procedure allows the conversion of large amounts of material and additionally provides an in situ purification because of precipitation of the target material during the reaction. The pronounced acid-dependency of the reaction yield observed for tris(N-phenyl,N-methyl-benzimidazol-2-yl)iridium(iii) and tris(N-phenyl,N-benzyl-benzimidazol-2-yl)iridium(iii) was investigated by labelling experiments and quantum chemical calculations. The results reveal a subtle balance between the strength of the acid, the coordinating power of the corresponding base and steric effects of the ligand sphere. Based on these findings, general rules are given for a systematic and material-specific modification of the reaction conditions for the mer-fac isomerization of homoleptic carbenic Ir(iii) complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...