Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(50): 10851-10860, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054435

RESUMO

A DNA strand can encapsulate a silver molecule to create a nanoscale, aqueous stable chromophore. A protected cluster that strongly fluoresces can also be weakly photolabile, and we describe the laser-driven photochemistry of the green fluorophore C4AC4TC3GT4/Ag106+. The embedded cluster is selectively photoexcited at 490 nm and then bleached, and we describe how the efficiency, products, and route of this photochemical reaction are controlled by the DNA cage. With irradiation at 496.5 nm, the cluster absorption progressively drops to give a photodestruction quantum yield of 1.5 (±0.2) × 10-4, ∼103× less efficient than fluorescence. A new λabs = 335 nm chromophore develops because the precursor with 4 Ag0 is converted into a group of clusters with 2 Ag0 - Ag64+, Ag75+, Ag86+, and Ag97+. The 4-7 Ag+ in this series are chemically distinct from the 2 Ag0 because they are selectively etched by iodide. This halide precipitates silver to favor only the smallest Ag64+ cluster, but the larger clusters re-develop when the precipitated Ag+ ions are replenished. DNA-bound Ag106+ decomposes because it is electronically excited and then reacts with oxygen. This two-step process may be state-specific because O2 quenches the red luminescence from Ag106+. However, the rate constant of 2.3 (±0.2) × 106 M-1 s-1 is relatively small, which suggests that the surrounding DNA matrix hinders O2 diffusion. On the basis of analogous photoproducts with methylene blue, we propose that a reactive oxygen species is produced and then oxidizes Ag106+ to leave behind a loose Ag+-DNA skeleton. These findings underscore the ability of DNA scaffolds to not only tune the spectra but also guide the reactions of their molecular silver adducts.

2.
J Phys Chem C Nanomater Interfaces ; 127(22): 10574-10584, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37313118

RESUMO

A DNA-silver cluster conjugate is a hierarchical chromophore with a partly reduced silver core embedded within the DNA nucleobases that are covalently linked by the phosphodiester backbone. Specific sites within a polymeric DNA can be targeted to spectrally tune the silver cluster. Here, the repeated (C2A)6 strand is interrupted with a thymine, and the resulting (C2A)2-T-(C2A)4 forms only Ag106+, a chromophore with both prompt (∼1 ns) green and sustained (∼102 µs) red luminescence. Thymine is an inert placeholder that can be removed, and the two fragments (C2A)2 and (C2A)4 also produce the same Ag106+ adduct. In relation to (C2A)2T(C2A)4, the (C2A)2 + (C2A)4 pair is distinguished because the red Ag106+ luminescence is ∼6× lower, relaxes ∼30% faster, and is quenched ∼2× faster with O2. These differences suggest that a specific break in the phosphodiester backbone can regulate how a contiguous vs broken scaffold wraps and better protects its cluster adduct.

3.
J Phys Chem Lett ; 13(48): 11317-11322, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36453924

RESUMO

When strands of DNA encapsulate silver clusters, supramolecular optical chromophores develop. However, how a particular structure endows a specific spectrum remains poorly understood. Here, we used neutron diffraction to map protonation in (A2C4)2-Ag8, a green-emitting fluorophore with a "Big Dipper" arrangement of silvers. The DNA host has two substructures with distinct protonation patterns. Three cytosines from each strand collectively chelate handle-like array of three silvers, and calorimetry studies suggest Ag+ cross-links. The twisted cytosines are further joined by hydrogen bonds from fully protonated amines. The adenines and their neighboring cytosine from each strand anchor a dipper-like group of five silvers via their deprotonated endo- and exocyclic nitrogens. Typically, exocyclic amines are strongly basic, so their acidification and deprotonation in (A2C4)2-Ag8 suggest that silvers perturb the electron distribution in the aromatic nucleobases. The different protonation states in (A2C4)2-Ag8 suggest that atomic level structures can pinpoint how to control and tune the electronic spectra of these nanoscale chromophores.


Assuntos
DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...