Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 17(1): 128-135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877864

RESUMO

Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus ([Formula: see text]) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 [Formula: see text]m) and lower pore volume (54.5%).

2.
Sci Technol Adv Mater ; 17(1): 313-323, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877884

RESUMO

We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

3.
Sci Rep ; 6: 24326, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27075397

RESUMO

We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 µm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

4.
Sci Technol Adv Mater ; 16(4): 043501, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877817

RESUMO

Ice templating, also known as freeze casting, is a popular shaping route for macroporous materials. Over the past 15 years, it has been widely applied to various classes of materials, and in particular ceramics. Many formulation and process parameters, often interdependent, affect the outcome. It is thus difficult to understand the various relationships between these parameters from isolated studies where only a few of these parameters have been investigated. We report here the results of a meta analysis of the structural and mechanical properties of ice templated materials from an exhaustive collection of records. We use these results to identify which parameters are the most critical to control the structure and properties, and to derive guidelines for optimizing the mechanical response of ice templated materials. We hope these results will be a helpful guide to anyone interested in such materials.

5.
Dent Mater ; 29(3): 348-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23384739

RESUMO

OBJECTIVES: The objective of this work is to study the crack produced by spherical and sharp indentation on veneering feldspathic dental porcelain in order to understand the morphology of the cracks in the surface and beneath the indentation using a tomographic technique. The geometry of cracks produced under contact loading are directly related to the structural integrity and reliability of dental prosthesis. METHODS: Monotonic Hertzian contact loading and nanoindentation tests were performed on feldspathic porcelain (VITA-VM9) coatings. Residual imprints and the cracks produced by the indentations were characterized by 3-dimensional reconstruction using focused ion beam tomography. RESULTS: Under nanoindentation, the propagating crack deflects due to the interaction with the leucite particles resulting in a crack with a complex morphology. Under spherical contact loading, multiple ring cracks were observed at the surface, with a conical shape beneath the residual imprint. SIGNIFICANCE: These results will help to improve the mechanical performance of these materials by detecting potential causes of failure for the long term structural integrity and reliability of the prosthesis.


Assuntos
Silicatos de Alumínio/química , Porcelana Dentária/química , Propriedades de Superfície , Zircônio/química , Análise do Estresse Dentário , Módulo de Elasticidade , Dureza , Tomografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...