Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 215(3): 108006, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507029

RESUMO

Eukaryotic initiation factor 2 (eIF2) plays a key role in protein synthesis and in its regulation. The assembly of this heterotrimeric factor is facilitated by Cdc123, a member of the ATP grasp family that binds the γ subunit of eIF2. Notably, some mutations related to MEHMO syndrome, an X-linked intellectual disability, affect Cdc123-mediated eIF2 assembly. The mechanism of action of Cdc123 is unclear and structural information for the human protein is awaited. Here, the crystallographic structure of human Cdc123 (Hs-Cdc123) bound to domain 3 of human eIF2γ (Hs-eIF2γD3) was determined. The structure shows that the domain 3 of eIF2γ is bound to domain 1 of Cdc123. In addition, the long C-terminal region of Hs-Cdc123 provides a link between the ATP and Hs-eIF2γD3 binding sites. A thermal shift assay shows that ATP is tightly bound to Cdc123 whereas the affinity of ADP is much smaller. Yeast cell viability experiments, western blot analysis and two-hybrid assays show that ATP is important for the function of Hs-Cdc123 in eIF2 assembly. These data and recent findings allow us to propose a refined model to explain the mechanism of action of Cdc123 in eIF2 assembly.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Proteínas de Saccharomyces cerevisiae , Humanos , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
2.
Mol Biol Cell ; 34(3): ar22, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696177

RESUMO

The nucleolus is a multilayered, membraneless organelle made up of liquidlike biogenesis compartments surrounding an array of ribosomal RNA genes (rDNA). Biogenesis factors accumulate in the outer compartments through RNA binding and phase separation promoted by intrinsically disordered protein regions. In contrast, the nucleolar localization of rDNA-binding proteins, which reside in the central chromatin compartment, is less well characterized. To gain mechanistic insight, we analyzed the localization, mitotic segregation, nucleic acid binding, and nuclear dynamics of the budding yeast rDNA-binding protein Hmo1. Deletion of the main DNA-binding domain, the HMG boxB, compromised Hmo1 transfer to daughter cells in mitosis and transcription-independent rDNA association but still allowed nucleolar localization. The C-terminal lysine-rich region turned out to be a combined nuclear and nucleolar localization sequence (NLS-NoLS). Its integrity was required for maximal enrichment and efficient retention of Hmo1 in the nucleolus and nucleolar localization of the ΔboxB construct. Moreover, the NLS-NoLS region was sufficient to promote nucleolar accumulation and bound nucleic acids in vitro with some preference for RNA. Bleaching experiments indicated mobility of Hmo1 inside the nucleolus but little exchange with the nucleoplasm. Thus, a bilayered targeting mechanism secures proper localization of Hmo1 to the nucleolus.


Assuntos
Saccharomycetales , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , DNA Ribossômico/genética , RNA/metabolismo , Saccharomycetales/metabolismo
3.
Methods Mol Biol ; 2533: 247-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796993

RESUMO

Thermofluor is a fluorescence-based thermal shift assay, which measures temperature-induced protein unfolding and thereby yields valuable information about the integrity of a purified recombinant protein. Analysis of ligand binding to a protein is another popular application of this assay. Thermofluor requires neither protein labeling nor highly specialized equipment, and can be performed in a regular real-time PCR instrument. Thus, for a typical molecular biology laboratory, Thermofluor is a convenient method for the routine assessment of protein quality. Here, we provide Thermofluor protocols using the example of Cdc123. This ATP-grasp protein is an essential assembly chaperone of the eukaryotic translation initiation factor eIF2. We also report on a destabilized mutant protein version and on the ATP-mediated thermal stabilization of wild-type Cdc123 illustrating protein integrity assessment and ligand binding analysis as two major applications of the Thermofluor assay.


Assuntos
Fator de Iniciação 2 em Eucariotos , Desdobramento de Proteína , Trifosfato de Adenosina/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Ligantes , Ligação Proteica , Proteínas Recombinantes/metabolismo
4.
J Biol Chem ; 298(2): 101583, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35031321

RESUMO

The eukaryotic translation initiation factor 2 (eIF2) has key functions in the initiation step of protein synthesis. eIF2 guides the initiator tRNA to the ribosome, participates in scanning of the mRNA molecule, supports selection of the start codon, and modulates the translation of mRNAs in response to stress. eIF2 comprises a heterotrimeric complex whose assembly depends on the ATP-grasp protein Cdc123. Mutations of the eIF2γ subunit that compromise eIF2 complex formation cause severe neurological disease in humans. To this date, however, details about the assembly mechanism, step order, and the individual functions of eIF2 subunits remain unclear. Here, we quantified assembly intermediates and studied the behavior of various binding site mutants in budding yeast. Based on these data, we present a model in which a Cdc123-mediated conformational change in eIF2γ exposes binding sites for eIF2α and eIF2ß subunits. Contrary to an earlier hypothesis, we found that the associations of eIF2α and eIF2ß with the γ-subunit are independent of each other, but the resulting heterodimers are nonfunctional and fail to bind the guanosine exchange factor eIF2B. In addition, levels of eIF2α influence the rate of eIF2 assembly. By binding to eIF2γ, eIF2α displaces Cdc123 and thereby completes the assembly process. Experiments in human cell culture indicate that the mechanism of eIF2 assembly is conserved between yeast and humans. This study sheds light on an essential step in eukaryotic translation initiation, the dysfunction of which is linked to human disease.


Assuntos
Fator de Iniciação 2 em Eucariotos , Fator de Iniciação 2 em Procariotos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Humanos , Fator de Iniciação 2 em Procariotos/metabolismo , RNA de Transferência de Metionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Chimia (Aarau) ; 75(6): 476-479, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34233807

RESUMO

Since its foundation in 1971, Bachem has grown sustainably over the last 50 years and is excellently positioned as the leading company for the development and production of TIDES i.e. peptides and oligonucleotides. Bachem's success relies on its commitment to manufacturing high-quality active pharmaceutical ingredients (APIs) alongside its continual passion for innovative chemistry and technologies. This review aims at summarizing improvements in high-quality peptide manufacturing as well as recent advances towards sustainable and innovative technology in peptide chemistry, thereby reducing the environmental footprint.


Assuntos
Indústria Farmacêutica , Preparações Farmacêuticas , Peptídeos , Controle de Qualidade
6.
PLoS Genet ; 15(2): e1008006, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30802237

RESUMO

RNA polymerase I (Pol I) synthesizes ribosomal RNA (rRNA) in all eukaryotes, accounting for the major part of transcriptional activity in proliferating cells. Although basal Pol I transcription factors have been characterized in diverse organisms, the molecular basis of the robust rRNA production in vivo remains largely unknown. In S. cerevisiae, the multifunctional Net1 protein was reported to stimulate Pol I transcription. We found that the Pol I-stimulating function can be attributed to the very C-terminal region (CTR) of Net1. The CTR was required for normal cell growth and Pol I recruitment to rRNA genes in vivo and sufficient to promote Pol I transcription in vitro. Similarity with the acidic tail region of mammalian Pol I transcription factor UBF, which could partly functionally substitute for the CTR, suggests conserved roles for CTR-like domains in Pol I transcription from yeast to human.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Sequência Conservada , Humanos , Proteínas Nucleares/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Transcrição Gênica
7.
Mol Biol Cell ; 30(5): 591-606, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625028

RESUMO

The nucleolus is a membraneless organelle of the nucleus and the site of rRNA synthesis, maturation, and assembly into preribosomal particles. The nucleolus, organized around arrays of rRNA genes (rDNA), dissolves during prophase of mitosis in metazoans, when rDNA transcription ceases, and reforms in telophase, when rDNA transcription resumes. No such dissolution and reformation cycle exists in budding yeast, and the precise course of nucleolar segregation remains unclear. By quantitative live-cell imaging, we observed that the yeast nucleolus is reorganized in its protein composition during mitosis. Daughter cells received equal shares of preinitiation factors, which bind the RNA polymerase I promoter and the rDNA binding barrier protein Fob1, but only about one-third of RNA polymerase I and the processing factors Nop56 and Nsr1. The distribution bias was diminished in nonpolar chromosome segregation events observable in dyn1 mutants. Unequal distribution, however, was enhanced by defects in RNA polymerase I, suggesting that rDNA transcription supports nucleolar segregation. Indeed, quantification of pre-rRNA levels indicated ongoing rDNA transcription in yeast mitosis. These data, together with photobleaching experiments to measure nucleolar protein dynamics in anaphase, consolidate a model that explains the differential partitioning of nucleolar components in budding yeast mitosis.


Assuntos
Nucléolo Celular/metabolismo , Mitose , Saccharomycetales/citologia , Saccharomycetales/metabolismo , Anáfase , Cromatina/metabolismo , Segregação de Cromossomos , DNA Ribossômico/genética , Modelos Biológicos , Mutação/genética , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , RNA Polimerase I/metabolismo , Precursores de RNA/metabolismo , Transcrição Gênica
8.
Mol Biol Cell ; 27(14): 2198-212, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226481

RESUMO

The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas Cdh1/metabolismo , Saccharomycetales/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Mitose/fisiologia , Fosforilação , Saccharomycetales/citologia , Saccharomycetales/enzimologia , Complexos Ubiquitina-Proteína Ligase/metabolismo
9.
Structure ; 23(9): 1596-1608, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26211610

RESUMO

Eukaryotic initiation factor 2 (eIF2), a heterotrimeric guanosine triphosphatase, has a central role in protein biosynthesis by supplying methionylated initiator tRNA to the ribosomal translation initiation complex and by serving as a target for translational control in response to stress. Recent work identified a novel step indispensable for eIF2 function: assembly of eIF2 from its three subunits by the cell proliferation protein Cdc123. We report the first crystal structure of a Cdc123 representative, that from Schizosaccharomyces pombe, both isolated and bound to domain III of Saccharomyces cerevisiae eIF2γ. The structures show that Cdc123 resembles enzymes of the ATP-grasp family. Indeed, Cdc123 binds ATP-Mg(2+), and conserved residues contacting ATP-Mg(2+) are essential for Cdc123 to support eIF2 assembly and cell viability. A docking of eIF2αγ onto Cdc123, combined with genetic and biochemical experiments, allows us to propose a model explaining how Cdc123 participates in the biogenesis of eIF2 through facilitating assembly of eIF2γ to eIF2α.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Fator de Iniciação 2 em Eucariotos/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Mol Biol Cell ; 26(5): 843-58, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540434

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) controls a variety of cellular processes through its ability to target numerous protein substrates for timely degradation. Substrate selection by this ubiquitin ligase depends on related activator proteins, Cdc20 and Cdh1, which bind and activate the APC/C at distinct cell cycle stages. Biochemical and structural studies revealed that Cdc20 and Cdh1 carry conserved receptor domains to recognize specific sequence motifs in substrates, such as D and KEN boxes. The mechanisms for ordered degradation of APC/C substrates, however, remain incompletely understood. Here we describe minimal degradation sequences (degrons) sufficient for rapid APC/C-Cdh1-specific in vivo degradation. The polo kinase Cdc5-derived degron contained an essential KEN motif, whereas a single RxxL-type D box was the relevant signal in the Cdc20-derived degradation domain, indicating that either motif may support specific recognition by Cdh1. In both degrons, the APC/C recognition motif was flanked by a nuclear localization sequence. Forced localization of the degron constructs revealed that proteolysis mediated by APC/C-Cdh1 is restricted to the nucleus and maximally active in the nucleoplasm. Levels of Iqg1, a cytoplasmic Cdh1 substrate, decreased detectably later than the nucleus-localized Cdh1 substrate Ase1, indicating that confinement to the nucleus may allow for temporal control of APC/C-Cdh1-mediated proteolysis.


Assuntos
Proteínas Cdc20/química , Proteínas Cdh1/química , Proteínas de Ciclo Celular/química , Proteínas Serina-Treonina Quinases/química , Proteólise , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Biol Chem ; 288(30): 21537-46, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23775072

RESUMO

The eukaryotic translation initiation factor 2 (eIF2) is central to the onset of protein synthesis and its modulation in response to physiological demands. eIF2, a heterotrimeric G-protein, is activated by guanine nucleotide exchange to deliver the initiator methionyl-tRNA to the ribosome. Here we report that assembly of the eIF2 complex in vivo depends on Cdc123, a cell proliferation protein conserved among eukaryotes. Mutations of CDC123 in budding yeast reduced the association of eIF2 subunits, diminished polysome levels, and increased GCN4 expression indicating that Cdc123 is critical for eIF2 activity. Cdc123 bound the unassembled eIF2γ subunit, but not the eIF2 complex, and the C-terminal domain III region of eIF2γ was both necessary and sufficient for Cdc123 binding. Alterations of the binding site revealed a strict correlation between Cdc123 binding, the biological function of eIF2γ, and its ability to assemble with eIF2α and eIF2ß. Interestingly, high levels of Cdc123 neutralized the assembly defect and restored the biological function of an eIF2γ mutant. Moreover, the combined overexpression of eIF2 subunits rescued an otherwise inviable cdc123 deletion mutant. Thus, Cdc123 is a specific eIF2 assembly factor indispensable for the onset of protein synthesis. Human Cdc123 is encoded by a disease risk locus, and, therefore, eIF2 biogenesis control by Cdc123 may prove relevant for normal cell physiology and human health. This work identifies a novel step in the eukaryotic translation initiation pathway and assigns a biochemical function to a protein that is essential for growth and viability of eukaryotic cells.


Assuntos
Proteínas de Ciclo Celular/genética , Fator de Iniciação 2 em Eucariotos/genética , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Iniciação Traducional da Cadeia Peptídica/genética , Polirribossomos/genética , Polirribossomos/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
12.
PLoS Biol ; 11(2): e1001495, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468594

RESUMO

The spatiotemporal control of cell polarity is crucial for the development of multicellular organisms and for reliable polarity switches during cell cycle progression in unicellular systems. A tight control of cell polarity is especially important in haploid budding yeast, where the new polarity site (bud site) is established next to the cell division site after cell separation. How cells coordinate the temporal establishment of two adjacent polarity sites remains elusive. Here, we report that the bud neck associated protein Gps1 (GTPase-mediated polarity switch 1) establishes a novel polarity cue that concomitantly sustains Rho1-dependent polarization and inhibits premature Cdc42 activation at the site of cytokinesis. Failure of Gps1 regulation leads to daughter cell death due to rebudding inside the old bud site. Our findings provide unexpected insights into the temporal control of cytokinesis and describe the importance of a Gps1-dependent mechanism for highly accurate polarity switching between two closely connected locations.


Assuntos
Polaridade Celular/fisiologia , Citocinese/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Polaridade Celular/genética , Citocinese/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
13.
Cell ; 145(4): 543-54, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565613

RESUMO

In eukaryotes, each of the more than 100 copies of ribosomal RNA (rRNA) genes exists in either an RNA polymerase I transcribed open chromatin state or a nucleosomal, closed chromatin state. Open rRNA genes guarantee the cell's supply with structural components of the ribosome, whereas closed rRNA genes ensure genomic integrity. We report that the observed balance between open and closed rRNA gene chromatin states in proliferating yeast cells is due to a dynamic equilibrium of transcription-dependent removal and replication-dependent assembly of nucleosomes. Pol I transcription is required for the association of the HMG box protein Hmo1 with open rRNA genes, counteracting replication-independent nucleosome deposition and maintaining the open rRNA gene chromatin state outside of S phase. The findings indicate that the opposing effects of replication and transcription lead to a de novo establishment of chromatin states for rRNA genes during each cell cycle.


Assuntos
Cromatina/metabolismo , Genes de RNAr , Saccharomyces cerevisiae/citologia , Ciclo Celular , Replicação do DNA , DNA Ribossômico/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
14.
Curr Biol ; 18(13): 1001-5, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18595708

RESUMO

Cdc14 phosphatase is an important regulator of mitosis in budding yeast. Cdc14 antagonizes cyclin-dependent kinases and promotes multiple postmetaphase events, including segregation of the ribosomal RNA gene array (rDNA) and the nucleolus assembled around this gene cluster. During most of the cell cycle, Cdc14 is anchored to the nucleolus and kept inactive by binding to Net1 (also known as Cfi1). Cdc14 and Net1 are part of a larger nucleolar-protein network, which also contains the Net1-related protein Tof2. Tof2 contributes to the transcriptional silencing of rDNA regions, but the precise cellular and molecular functions of Tof2 remain unclear. Here, we report that, like Net1, Tof2 can bind to Cdc14 directly. Unlike Net1, however, Tof2 did not inhibit Cdc14 but supported Cdc14 phosphatase activity and in vivo function. Deletion of TOF2 delayed rDNA segregation with little effect on mitotic exit, impaired relocalization of condensin to the nucleolus in anaphase, and caused rDNA-dependent synthetic lethality when a cdc14 mutation was present. Thus, Tof2 collaborates with Cdc14 specifically in rDNA segregation, presumably by targeting Cdc14 phosphatase activity to the nucleolus during anaphase to support resolution and compaction of this repetitive and highly transcribed DNA locus.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , DNA Ribossômico/metabolismo , Mitose , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citologia , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos/metabolismo , Saccharomycetales/metabolismo
15.
J Am Chem Soc ; 130(16): 5492-8, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18366166

RESUMO

Cryptophycins are potent anticancer agents isolated from Nostoc sp. ATCC 53789 and Nostoc sp. GSV 224. The most potent natural cryptophycin analogues retain a beta-epoxide at the C2'-C3' position of the molecule. A P450 epoxidase encoded by c rpE recently identified from the cryptophycin gene cluster was shown to install this key functional group into cryptophycin-4 (Cr-4) to produce cryptophycin-2 (Cr-2) in a regio- and stereospecific manner. Here we report a detailed characterization of the CrpE epoxidase using an engineered maltose binding protein (MBP)-CrpE fusion. The substrate tolerance of the CrpE polypeptide was investigated with a series of structurally related cryptophycin analogues generated by chemoenzymatic synthesis. The enzyme specifically installed a beta-epoxide between C2' and C3' of cyclic cryptophycin analogues. The kcat/Km values of the enzyme were determined to provide further insights into the P450 epoxidase catalytic efficiency affected by substrate structural variation. Finally, binding analysis revealed cooperativity of MBP-CrpE toward natural and unnatural desepoxy cryptophycin substrates.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Sistema Enzimático do Citocromo P-450 , Depsipeptídeos/farmacologia , Oxirredutases , Sítios de Ligação , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases/análise , Oxirredutases/metabolismo , Especificidade por Substrato , Termodinâmica
17.
Chem Biol ; 14(8): 944-54, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17719493

RESUMO

The pikromycin polyketide synthase (PKS) is unique in its ability to generate both 12 and 14 membered ring macrolactones. As such, dissection of the molecular basis for controlling metabolic diversity in this system remains an important objective for understanding modular PKS function and expanding chemical diversity. Here, we describe a series of experiments designed to probe the importance of the protein-protein interaction that occurs between the final two monomodules, PikAIII (module 5) and PikAIV (module 6), for the production of the 12 membered ring macrolactone 10-deoxymethynolide. The results obtained from these in vitro studies demonstrate that PikAIII and PikAIV generate the 12 membered ring macrocycle most efficiently when engaged in their native protein-protein interaction. Accordingly, the data are consistent with PikAIV adopting an alternative conformation that enables the terminal thioesterase domain to directly off-load the PikAIII-bound hexaketide intermediate for macrocyclization.


Assuntos
Lactonas/química , Macrolídeos/metabolismo , Policetídeo Sintases/metabolismo , Sequência de Bases , Domínio Catalítico , Ciclização , Primers do DNA , Esterases/metabolismo , Mutagênese Sítio-Dirigida , Policetídeo Sintases/química , Policetídeo Sintases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...