Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chempluschem ; 88(2): e202200395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563109

RESUMO

Luminomagnetic composites have been synthesized that allow for an individual tuning of luminescence intensity, chromaticity and magnetization by combination of superparamagnetic, citrate-stabilized iron oxide nanoparticles with the luminescent MOFs 3 ∞ [Ln2 (BDC)3 (H2 O)4 ] (Ln=Eu, Tb; BDC2- =terephthalate). The components are arranged to a concept of inverse structuring compared to previous luminomagnetic composites with MOF@magnetic particle (shell@core) composition so that the luminescent MOF now acts as core and is covered by magnetic nanoparticles forming the satellite shell. Thereby, the magnetic and photophysical properties are individually tuneable between high emission intensity (1.2 ⋅ 106  cps mg-1 ) plus low saturation magnetization (6 emu g-1 ) and the direct opposite (0.09 ⋅ 106  cps mg-1 ; 42 emu g-1 ) by adjusting the particle coverage of the MOF. This is not achievable with a core-shell structure having a magnetic core and a dense MOF shell. The composition of the composites and the influence of different synthesis conditions on their properties were investigated by SEM/EDX, PXRD, magnetization measurements and photoluminescence spectroscopy.

2.
Chemistry ; 28(23): e202200881, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35352413

RESUMO

Invited for the cover of this issue are Klaus Müller-Buschbaum and co-workers at Giessen University. The image depicts an aluminium-based MOF as a novel material for the capture of iodine radioisotopes from a potential gas atmosphere exposure. Read the full text of the article at 10.1002/chem.202104171.


Assuntos
Iodo , Cátions , Humanos , Iodetos , Metais
3.
Chemistry ; 28(23): e202104171, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35179262

RESUMO

Eight cationic, two-dimensional metal-organic frameworks (MOFs) were synthesized in reactions of the group 13 metal halides AlBr3 , AlI3 , GaBr3 , InBr3 and InI3 with the dipyridyl ligands 1,2-di(4-pyridyl)ethylene (bpe), 1,2-di(4-pyridyl)ethane (bpa) and 4,4'-bipyridine (bipy). Seven of them follow the general formula 2 ∞ [MX2 (L)2 ]A, M=Al, In, X=Br, I, A- =[MX4 ]- , I- , I3 - , L=bipy, bpa, bpe. Thereby, the porosity of the cationic frameworks can be utilized to take up the heavy molecule iodine in gas-phase chemisorption vital for the capture of iodine radioisotopes. This is achieved by switching between I- and the polyiodide I3 - in the cavities at room temperature, including single-crystal-to-single-crystal transformation. The MOFs are 2D networks that exhibit (4,4)-topology in general or (6,3)-topology for 2 ∞ [(GaBr2 )2 (bpa)5 ][GaBr4 ]2 ⋅bpa. The two-dimensional networks can either be arranged to an inclined interpenetration of the cationic two-dimensional networks, or to stacked networks without interpenetration. Interpenetration is accompanied by polycatenation. Due to the cationic character, the MOFs require the counter ions [MX4 ]- , I- or I3 - counter ions in their pores. Whereas the [MX4 ]- , ions are immobile, iodide allows for chemisorption. Furthermore, eight additional coordination polymers and complexes were identified and isolated that elaborate the reaction space of the herein reported syntheses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...