Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728981

RESUMO

The increasing concern over pesticide pollution in water bodies underscores the need for effective mitigation strategies to support the transition towards sustainable agriculture. This study assesses the effectiveness of landscape mitigation strategies, specifically vegetative buffer strips, in reducing glyphosate loads at the catchment scale under realistic conditions. Conducted over six years (2014-2019) in a small agricultural region in Belgium, our research involved the analysis of 732 water samples from two monitoring stations, differentiated by baseflow and event-driven sampling, and before (baseline) and after the implementation of mitigation measures. The results indicated a decline in both the number and intensity of point source losses over the years. Additionally, there was a general decrease in load intensity; however, the confluence of varying weather conditions (notably dry years during the mitigation period) and management practices (the introduction of buffer strips) posed challenges for a statistically robust evaluation of each contributing factor. A reduction of loads was measured when comparing mitigation with baseline, although this reduction is not statistically significant. Glyphosate loads during rainfall events correlated with a rainfall index and runoff ratio. Overall, focusing the mitigation strategy on runoff and erosion was a valid approach. Nevertheless, challenges remain, as evidenced by the continuous presence of glyphosate in baseflow conditions, highlighting the complex dynamics of pesticide transport. The study concludes that while progress has been made towards reducing pesticide pollution, the complexity of interacting factors necessitates further research. Future directions should focus on enhancing farmer engagement in mitigation programs and developing experiments with more intense data collection that help to assess underlying dynamics of pesticide pollution and the impact of mitigation strategies in more detail, contributing towards the goal of reducing pesticide pollution in water bodies.


Assuntos
Agricultura , Glifosato , Bélgica , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Glicina/análogos & derivados , Glicina/análise , Praguicidas/análise
2.
J Environ Manage ; 360: 121098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776657

RESUMO

Remediation activities, particularly in megasites, may induce substantial secondary environmental impacts that must be addressed for green and sustainable remediation (GSR) practices. Only limited studies are available quantitatively assessing the environmental footprint and environmental benefits of implementing Best Management Practices (BMPs) in megasite remediation. This study used the SiteWise™ tool, a quantitative environmental footprint assessment for scenario simulation and benefit quantification of BMPs, on a contaminated megasite in Hebei Province, China. We observed a considerable environmental footprint and energy from the remediation. Taking the final implementation alternative (Alt 1) as an example, which is characterized by combining multiple remediation techniques, the greenhouse gas (GHG) emissions reached 113,474 t, the energy used was 2,082,841 million metric British thermal units (MMBTU), and other air pollutant emissions (NOx, SOx, and PM10) amounted to 856 t. Further BMP analyses highlighted the benefits of substituting the conventional solidification/stabilization agent with willow woodchip-based biochar, which could reduce GHG emissions by 50,806 t and energy used by 926,648 MMBTU. The overall environmental benefits of implementing all applicable BMPs in the remediation were significant, with a 66.85%, 50.15%, and 56.05% reduction in GHG emissions, energy used, and other air pollutants, respectively. Our study provides insights into quantifying the environmental footprint and exploring emission reduction pathways for contaminated megasite remediation. It also offers a feasible path for quantifying the environmental benefits of BMPs, promoting the development of GSR of contaminated sites.


Assuntos
Recuperação e Remediação Ambiental , Recuperação e Remediação Ambiental/métodos , China , Gases de Efeito Estufa/análise
3.
J Environ Manage ; 246: 583-593, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202826

RESUMO

Identifying priority areas is an essential step in developing management strategies to reduce pesticide loads in surface water. A spatially explicit model-based approach was developed to detect priority areas for diffuse pesticide pollution at catchment scale. The method uses available datasets and considers different pesticide pathways in the environment post-application. The approach was applied in a catchment area in SE Flanders (Belgium) as a case study. Calculated risk areas were obtained using detailed landscape data and combining pesticide emissions and hydrological connectivity. The risk areas obtained were further compared with an alternative observation-based method, developed specifically for this study site that includes long-term field observations and local expert knowledge. Both methods equally classified 50% of the areas. The impact of crop rotation on the calculated risk was analysed. High-risk areas were identified and added to a cumulative map over all five years to evaluate temporal variations. The model-based approach was used for the initial identification of risk areas at the study site. The tool helps to prioritise zones and detect particular fields to target landscape mitigation measures to reduce diffuse pesticide pollution reaching surface water bodies.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Bélgica , Poluição da Água
4.
Water Res ; 124: 663-672, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28823903

RESUMO

To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km2) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources and complex transport mechanisms, the adapted hysteresis analysis can help to improve our understanding on pesticide transport behaviours and provide a basis for effective management strategies.


Assuntos
Agricultura , Praguicidas/química , Poluentes Químicos da Água/química , Monitoramento Ambiental , Rios
5.
Appl Microbiol Biotechnol ; 100(17): 7361-76, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27475808

RESUMO

In recent years, the application of pesticide biodegradation in remediation of pesticide-contaminated matrices moved from remediating bulk soil to remediating and mitigating pesticide pollution of groundwater and surface water bodies. Specialized pesticide-degrading microbial populations are used, which can be endogenous to the ecosystem of interest or introduced by means of bioaugmentation. It involves (semi-)natural ecosystems like agricultural fields, vegetated filter strips, and riparian wetlands and man-made ecosystems like on-farm biopurification systems, groundwater treatment systems, and dedicated modules in drinking water treatment. Those ecosystems and applications impose challenges which are often different from those associated with bulk soil remediation. These include high or extreme low pesticide concentrations, mixed contamination, the presence of alternative carbon sources, specific hydraulic conditions, and spatial and temporal variation. Moreover, for various indicated ecosystems, limited knowledge exists about the microbiota present and their physiology and about the in situ degradation kinetics. This review reports on the current knowledge on applications of biodegradation in mitigating and remediating freshwater pesticide contamination. Attention is paid to the challenges involved and current knowledge gaps for improving those applications.


Assuntos
Biodegradação Ambiental , Água Doce/análise , Água Subterrânea/análise , Praguicidas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Ecossistema , Água Doce/microbiologia , Água Subterrânea/microbiologia , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo
6.
Environ Sci Process Impacts ; 17(12): 2034-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26487336

RESUMO

Undoubtedly, the most important advance in the environmental regulatory monitoring of elements of the last decade is the widespread introduction of ICP-mass spectrometry (ICP-MS) due to standards developed by the European Committee for Standardization. The versatility of ICP-MS units as a tool for the determination of major, minor and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Ti, V and Zn) in surface water, groundwater, river sediment, topsoil, subsoil, fine particulates and atmospheric deposition is illustrated in this paper. Ranges of background concentrations for major, minor and trace elements obtained from a regional case study (Flanders, Belgium) are summarized for all of these environmental compartments and discussed in the context of a harmonized implementation of European regulatory monitoring requirements. The results were derived from monitoring programs in support of EU environmental quality directives and were based on a selection of (non-polluted) background locations. Because of the availability of ICP-MS instruments nowadays, it can be argued that the main hindrance for meeting the European environmental monitoring requirements is no longer the technical feasibility of analysis at these concentration levels, but rather (i) potential contamination during sampling and analysis, (ii) too limited implementation of quality control programs, validating the routinely applied methods (including sampling and low level verification) and (iii) lack of harmonization in reporting of the chemical environmental status between the individual member states.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Espectrofotometria Atômica , Oligoelementos/análise , Monitoramento Ambiental/normas , União Europeia , Padrões de Referência
7.
Environ Sci Process Impacts ; 17(7): 1271-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26040331

RESUMO

In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.


Assuntos
Monitoramento Ambiental/métodos , Radar , Poluentes do Solo/análise , Cidades , Fenômenos Eletromagnéticos , Monitoramento Ambiental/instrumentação , Hidrocarbonetos/análise , Petróleo/análise , Poluição por Petróleo/análise , Solo/química
8.
Sci Total Environ ; 517: 207-14, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25727676

RESUMO

Urban runoff can be a significant source of pesticides in urban streams. However, quantification of this source has been difficult because pesticide use by urban residents (e.g., on pavements or in gardens) is often unknown, particularly at the scale of a residential catchment. Proper quantification and characterization of pesticide loss via urban runoff require sound information on the use and occurrence of pesticides at hydrologically-relevant spatial scales, involving various hydrological conditions. We conducted a monitoring study in a residential area (9.5 ha, Flanders, Belgium) to investigate the use and loss of a widely-used herbicide (glyphosate) and its major degradation product (aminomethylphosphonic acid, AMPA). The study covered 13 rainfall events over 67 days. Overall, less than 0.5% of glyphosate applied was recovered from the storm drain outflow in the catchment. Maximum detected concentrations were 6.1 µg/L and 5.8 µg/L for glyphosate and AMPA, respectively, both of which are below the predicted no-effect concentration for surface water proposed by the Flemish environmental agency (10 µg/L), but are above the EU drinking water standard (0.1 µg/L). The measured concentrations and percentage loss rates can be attributed partially to the strong sorption capacity of glyphosate and low runoff potential in the study area. However, glyphosate loss varied considerably among rainfall events and event load of glyphosate mass was mainly controlled by rainfall amount, according to further statistical analyses. To obtain urban pesticide management insights, robust tools are required to investigate the loss and occurrence of pesticides influenced by various factors, particularly the hydrological and spatial factors.


Assuntos
Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas/análise , Poluentes Químicos da Água/análise , Bélgica , Glicina/análise , Chuva/química , Rios/química , Glifosato
9.
Environ Sci Technol ; 49(5): 2886-94, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25661567

RESUMO

The fate of iron (Fe) may affect that of phosphorus (P) and arsenic (As) in natural waters. This study addresses the removal of Fe, P, and As from streams in lowland catchments fed by reduced, Fe-rich groundwater (average: 20 mg Fe L(-1)). The concentrations of dissolved Fe (<0.45 µm) in streams gradually decrease with increasing hydraulic residence time (travel time) of the water in the catchment. The removal of Fe from streamwater is governed by chemical reactions and hydrological processes: the oxidation of ferrous iron (Fe(II)) and the subsequent formation of particulate Fe oxyhydroxides proceeds as the water flows through the catchment into increasingly larger streams. The Fe removal exhibits first-order kinetics with a mean half-life of 12 h, a value in line with predictions by a kinetic model for Fe(II) oxidation. The Fe concentrations in streams vary seasonally: they are higher in winter than in summer, due to shorter hydraulic residence time and lower temperature in winter. The removal of P and As is much faster than that of Fe. The average concentrations of P and As in streams (42 µg P L(-1) and 1.4 µg As L(-1)) are 1 order of magnitude below those in groundwater (393 µg P L(-1) and 17 µg As L(-1)). This removal is attributed to fast sequestration by oxidizing Fe when the water enters oxic environments, possibly by adsorption on Fe oxyhydroxides or by formation of ferric phosphates. The average P and As concentrations in groundwater largely exceed local environmental limits for freshwater (140 µg P L(-1) and 3 µg As L(-1)), but in streams, they are below these limits. Naturally occurring Fe in groundwater may alleviate the environmental risk associated with P and As in the receiving streams.


Assuntos
Água Doce/química , Ferro/química , Fósforo/química , Arsênio/química , Água Subterrânea/química , Poluentes Químicos da Água/análise
10.
J Contam Hydrol ; 173: 38-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25528244

RESUMO

In this study a numerical groundwater reactive transport model of a shallow groundwater aquifer contaminated with volatile organic compounds is developed. In addition to advective-dispersive transport, the model includes contaminant release from source areas, natural attenuation, abiotic degradation by a permeable reactive barrier at the site, and dilution by infiltrating rain. Aquifer heterogeneity is parameterized using pilot points for hydraulic conductivity, specific yield and groundwater recharge. A methodology is developed and applied to estimate the large number of parameters from the limited data at the field site (groundwater levels, groundwater concentrations of multiple chemical species, point-scale measurements of soil hydraulic conductivity, and lab-scale derived information on chemical and biochemical reactions). The proposed methodology relies on pilot point parameterization of hydraulic parameters and groundwater recharge, a regularization procedure to reconcile the large number of spatially distributed model parameters with the limited field data, a step-wise approach for integrating the different data sets into the model, and high performance computing. The methodology was proven to be effective in reproducing multiple contaminant plumes and in reducing the prior parameter uncertainty of hydraulic conductivity and groundwater recharge. Our results further indicate that contaminant transport predictions are strongly affected by the choice of the groundwater recharge model and flow parameters should be identified using both head and concentration measurements.


Assuntos
Água Subterrânea/química , Modelos Teóricos , Compostos Orgânicos Voláteis/química , Movimentos da Água , Bélgica , Hidrologia , Chuva , Solo/química , Poluentes Químicos da Água/química
11.
Environ Sci Process Impacts ; 16(6): 1510-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24770377

RESUMO

The effects on river water quality of sewer overflows are not well known. Since the duration of the overflow is in the order of magnitude of minutes to hours, continuous measurements of water quality are needed and traditional grab sampling is unable to quantify the pollution loads. The objective of this paper was to demonstrate the applicability of high frequency measurements for assessing the impacts of waste water treatment plants on the water quality of the receiving surface water. In our in situ water quality monitoring setup, two types of multiparameter sensors mounted on a floating fixed platform were used to determine the dynamics of dissolved oxygen, specific conductivity, ammonium-N, nitrate-N and dissolved organic carbon downstream of a waste water treatment plant (WWTP), in combination with data on rainfall, river discharge and WWTP overflow discharge. The monitoring data for water quantity and water quality were used to estimate the pollution load from waste water overflow events and to assess the impact of waste water overflows on the river water quality. The effect of sewer overflow on a small river in terms of N load was shown to be significant. The WWTP overflow events accounted for about 1/3 of the river discharge. The NH4-N loads during overflow events contributed 29% and 21% to the August 2010 and June 2011 load, respectively, in only 8% and 3% of the monthly time span. The results indicate that continuous monitoring is needed to accurately represent the effects of sewer overflows in river systems.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Águas Residuárias/estatística & dados numéricos , Poluentes da Água/análise , Poluição da Água/estatística & dados numéricos
12.
J Hazard Mater ; 270: 18-26, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24525160

RESUMO

In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate.


Assuntos
Hidrogênio/química , Ferro/química , Nanopartículas Metálicas/química , Corrosão , Água Subterrânea/química
13.
J Contam Hydrol ; 157: 25-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275111

RESUMO

Stimulated anaerobic dechlorination is generally considered a valuable step for the remediation of aquifers polluted with chlorinated ethenes (CEs). Correct simulation and prediction of this process in situ, however, require good knowledge of the associated biological reactions. The aim of this study was to evaluate the dechlorination reaction in an aquifer contaminated with trichloroethene (TCE) and its daughter products, discharging into the Zenne River. Different carbon sources were used in batch cultures and these were related to the dechlorination reaction, together with the monitored biomarkers. Appropriate kinetic formulations were assessed. Reductive dechlorination of TCE took place only when external carbon sources were added to microcosms, and occurred concomitant with a pronounced increase in the Dehalococcoides mccartyi cell count as determined by 16S rRNA gene-targeted qPCR. This indicates that native dechlorinating bacteria are present in the aquifer of the Zenne site and that the oligotrophic nature of the aquifer prevents a complete degradation to ethene. The type of carbon source, the cell number of D. mccartyi or the reductive dehalogenase genes, however, did not unequivocally explain the observed differences in degradation rates or the extent of dechlorination. Neither first-order, Michaelis-Menten nor Monod kinetics could perfectly simulate the dechlorination reactions in TCE spiked microcosms. A sensitivity analysis indicated that the inclusion of donor limitation would not significantly enhance the simulations without a clear process understanding. Results point to the role of the supporting microbial community but it remains to be verified how the complexity of the microbial (inter)actions should be represented in a model framework.


Assuntos
Chloroflexi/metabolismo , Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Bélgica , Biodegradação Ambiental , Carbono/metabolismo , Cloro/metabolismo , Chloroflexi/genética , DNA Bacteriano/genética , Dicloroetilenos/metabolismo , Água Subterrânea , Cinética , Modelos Biológicos , RNA Ribossômico 16S/genética , Cloreto de Vinil/metabolismo
14.
J Environ Qual ; 43(3): 859-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25602815

RESUMO

A spatially distributed model for leaching of Cd from the unsaturated zone was developed for the Belgian-Dutch transnational Kempen region. The model uses as input land-use maps, atmospheric deposition data, and soil data and is part of a larger regional model that simulates transport of Cd in soil, groundwater, and surface water. A new method for deriving deposition from multiple sites was validated using soil data in different wind directions. Leaching was calculated for the period 1890 to 2010 using a reconstruction of metal loads in the region. The model was able to reproduce spatial patterns of concentrations in soil and groundwater and predicted the concentration in shallow groundwater adequately well for the purpose of evaluating management options. For 42% of the data points, measurements and calculations were within the same concentration class. The model was used for forecasting under a reference scenario, an autonomous development scenario including climate change, and a scenario with implementation of remediation measures. The impact of autonomous development (under the most extreme scenario of climatic change) amounted to an increase of 10% in cumulative Cd flux after 100 yr as compared with the reference scenario. The impact of remediation measures was mainly local and is less pronounced (i.e., only 3% change in cumulative flux at the regional scale). The integrated model served as a tool to assist in developing management strategies and prioritization of remediation of the wide-spread heavy metal contamination in the region.

15.
Sci Total Environ ; 470-471: 954-66, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24239816

RESUMO

The state-of-the-science in sustainability assessment of soil and groundwater remediation is evaluated with the application of four decision support systems (DSSs) to a large-scale brownfield revitalization case study. The DSSs were used to perform sustainability appraisals of four technically feasible remediation alternatives proposed for the site. The first stage of the review compares the scope of each tool's sustainability indicators, how these indicators are measured and how the tools differ in terms of standardization and weighting procedures. The second stage of the review compares the outputs from the tools and determines the key factors that result in differing results between tools. The evaluation of indicator sets and tool structures explains why the tools generate differing results. Not all crucial impact areas, as identified by sustainable remediation forums, are thoroughly considered by the tools, particularly with regard to the social and economic aspects of sustainability. Variations in boundary conditions defined between technologies, produce distorted environmental impact results, especially when in-situ and ex-situ technologies are compared. The review draws attention to the need for end users to be aware of which aspects of sustainability are considered, how the aspects are measured and how all aspects are ultimately balanced in the evaluation of potential remediation strategies. Existing tools can be improved by considering different technologies within the same boundary conditions and by expanding indicator sets to include indicators deemed to be relevant by remediation forums.


Assuntos
Conservação dos Recursos Naturais/métodos , Poluentes Ambientais/análise , Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Solo/química , Técnicas de Apoio para a Decisão
16.
Eur J Pharm Biopharm ; 85(3 Pt B): 984-95, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23542609

RESUMO

A shift from batch processing towards continuous processing is of interest in the pharmaceutical industry. However, this transition requires detailed knowledge and process understanding of all consecutive unit operations in a continuous manufacturing line to design adequate control strategies. This can be facilitated by developing mechanistic models of the multi-phase systems in the process. Since modelling efforts only started recently in this field, uncertainties about the model predictions are generally neglected. However, model predictions have an inherent uncertainty (i.e. prediction uncertainty) originating from uncertainty in input data, model parameters, model structure, boundary conditions and software. In this paper, the model prediction uncertainty is evaluated for a model describing the continuous drying of single pharmaceutical wet granules in a six-segmented fluidized bed drying unit, which is part of the full continuous from-powder-to-tablet manufacturing line (Consigma™, GEA Pharma Systems). A validated model describing the drying behaviour of a single pharmaceutical granule in two consecutive phases is used. First of all, the effect of the assumptions at the particle level on the prediction uncertainty is assessed. Secondly, the paper focuses on the influence of the most sensitive parameters in the model. Finally, a combined analysis (particle level plus most sensitive parameters) is performed and discussed. To propagate the uncertainty originating from the parameter uncertainty to the model output, the Generalized Likelihood Uncertainty Estimation (GLUE) method is used. This method enables a modeller to incorporate the information obtained from the experimental data in the assessment of the uncertain model predictions and to find a balance between model performance and data precision. A detailed evaluation of the obtained uncertainty analysis results is made with respect to the model structure, interactions between parameters and uncertainty boundaries.


Assuntos
Dessecação/métodos , Tecnologia Farmacêutica/métodos , Algoritmos , Química Farmacêutica/métodos , Simulação por Computador , Funções Verossimilhança , Modelos Teóricos , Método de Monte Carlo , Pós , Reprodutibilidade dos Testes , Software , Comprimidos , Incerteza
17.
J Contam Hydrol ; 123(3-4): 83-93, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21237527

RESUMO

Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs.


Assuntos
Carbono/química , Metais Pesados/isolamento & purificação , Nitratos/química , Compostos Orgânicos/química , Poluentes do Solo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Precipitação Química , Concentração de Íons de Hidrogênio , Oxirredução , Poluentes do Solo/química , Sulfatos/química , Gerenciamento de Resíduos/métodos
18.
Environ Sci Pollut Res Int ; 16(7): 745-64, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19533193

RESUMO

BACKGROUND, AIM AND SCOPE: Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants. MAIN FEATURES: This paper deals with the following features: (1) management and remediation of contaminated sediments and associated risk assessment; (2) management options for ecosystems on polluted sediments, based on phytoremediation of contaminated sediments with focus on phytoextraction, phytostabilisation and phytoremediation of organic pollutants and (3) microbial and mycorrhizal processes occurring in contaminated sediments during phytoremediation. RESULTS: In this review, an overview is given of phytoremediation as a management option for semi-terrestrial and terrestrial ecosystems affected by polluted sediments, and the processes affecting pollutant bioavailability in the sediments. Studies that combine contaminated sediment and phytoremediation are relatively recent and are increasing in number since few years. Several papers suggest including phytoremediation in a management scheme for contaminated dredged sediments and state that phytoremediation can contribute to the revaluation of land-disposed contaminated sediments. The status of sediments, i.e. reduced or oxidised, highly influences contaminant mobility, its (eco)toxicity and the success of phytoremediation. Studies are performed either on near-fresh sediment or on sediment-derived soil. Field studies show temporal negative effects on plant growth due to oxidation and subsequent ageing of contaminated sediments disposed on land. The review shows that a large variety of plants and trees are able to colonise or develop on contaminated dredged sediment in particular conditions or events (e.g. high level of organic matter, clay and moisture content, flooding, seasonal hydrological variations). Depending on the studies, trees, high-biomass crop species and graminaceous species could be used to degrade organic pollutants, to extract or to stabilise inorganic pollutants. Water content of sediment is a limiting factor for mycorrhizal development. In sediment, specific bacteria may enhance the mobilisation of inorganic contaminants whereas others may participate in their immobilisation. Bacteria are also able to degrade organic pollutants. Their actions may be increased in the presence of plants. DISCUSSION: Choice of plants is particularly crucial for phytoremediation success on contaminated sediments. Extremely few studies are long-term field-based studies. Short-term effects and resilience of ecosystems is observed in long-term studies, i.e. due to degradation and stabilisation of pollutants. Terrestrial ecosystems affected by polluted sediments range from riverine tidal marshes with several interacting processes and vegetation development mainly determined by hydrology, over alluvial soils affected by overbank sedimentation (including flood control areas), to dredged sediment disposal facilities where hydrology and vegetation might be affected or managed by human intervention. This gradient is also a gradient of systems with highly variable soil and hydrological conditions in a temporal scale (tidal marshes) versus systems with a distinct soil development over time (dredged sediment landfill sites). CONCLUSIONS: In some circumstances (e.g. to avoid flooding or to ensure navigation) dredging operations are necessary. Management and remediation of contaminated sediments are necessary to reduce the ecological risks and risks associated with food chain contamination and leaching. Besides disposal, classical remediation technologies for contaminated sediment also extract or destroy contaminants. These techniques imply the sediment structure deterioration and prohibitive costs. On the contrary, phytoremediation could be a low-cost option, particularly suited to in situ remediation of large sites and environmentally friendly. However, phytoremediation is rarely included in the management scheme of contaminated sediment and accepted as a viable option. PERSPECTIVES: Phytoremediation is still an emerging technology that has to prove its sustainability at field scale. Research needs to focus on optimisations to enhance applicability and to address the economic feasibility of phytoremediation.


Assuntos
Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Sedimentos Geológicos/análise , Solo/análise , Áreas Alagadas , Poluentes Ambientais/química , Inundações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...