Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695974

RESUMO

This paper deals with analytical modelling of piezoelectric energy harvesting systems for generating useful electricity from ambient vibrations and comparing the usefulness of materials commonly used in designing such harvesters for energy harvesting applications. The kinetic energy harvesters have the potential to be used as an autonomous source of energy for wireless applications. Here in this paper, the considered energy harvesting device is designed as a piezoelectric cantilever beam with different piezoelectric materials in both bimorph and unimorph configurations. For both these configurations a single degree-of-freedom model of a kinematically excited cantilever with a full and partial electrode length respecting the dimensions of added tip mass is derived. The analytical model is based on Euler-Bernoulli beam theory and its output is successfully verified with available experimental results of piezoelectric energy harvesters in three different configurations. The electrical output of the derived model for the three different materials (PZT-5A, PZZN-PLZT and PVDF) and design configurations is in accordance with lab measurements which are presented in the paper. Therefore, this model can be used for predicting the amount of harvested power in a particular vibratory environment. Finally, the derived analytical model was used to compare the energy harvesting effectiveness of the three considered materials for both simple harmonic excitation and random vibrations of the corresponding harvesters. The comparison revealed that both PZT-5A and PZZN-PLZT are an excellent choice for energy harvesting purposes thanks to high electrical power output, whereas PVDF should be used only for sensing applications due to low harvested electrical power output.

2.
Sensors (Basel) ; 20(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266489

RESUMO

With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 "Optimising Design for Inspection" (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.

3.
Sensors (Basel) ; 20(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066546

RESUMO

Kinetic piezoelectric energy harvesters are used to power up ultra-low power devices without batteries as an alternative and eco-friendly source of energy. This paper deals with a novel design of a lead-free multilayer energy harvester based on BaTiO3 ceramics. This material is very brittle and might be cracked in small amplitudes of oscillations. However, the main aim of our development is the design of a crack protective layered architecture that protects an energy harvesting device in very high amplitudes of oscillations. This architecture is described and optimized for chosen geometry and the resulted one degree of freedom coupled electromechanical model is derived. This model could be used in bistable configuration and the model is extended about the nonlinear stiffness produced by auxiliary magnets. The complex bistable vibration energy harvester is simulated to predict operation in a wide range of frequency excitation. It should demonstrate typical operation of designed beam and a stress intensity factor was calculated for layers. The whole system, without presence of cracks, was simulated with an excitation acceleration of amplitude up to 1g. The maximal obtained power was around 2 mW at the frequency around 40 Hz with a maximal tip displacement 7.5 mm. The maximal operating amplitude of this novel design was calculated around 10 mm which is 10-times higher than without protective layers.

4.
ACS Sens ; 5(7): 2128-2135, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32551518

RESUMO

Nanomechanical resonators are routinely used for identification of various analytes such as biological and chemical molecules, viruses, or bacteria cells from the frequency response. This identification based on the multimode frequency shift measurement is limited to the analyte of mass that is much lighter than the resonator mass. Hence, the analyte can be modeled as a point particle and, as such, its stiffness and nontrivial binding effects such as surface stress can be neglected. For heavy analytes (>MDa), this identification, however, leads to incorrectly estimated masses. Using a well-known frequency response of the nanomechanical resonator in air, we show that the heavy analyte can be identified without a need for highly challenging analysis of the analyte position, stiffness, and/or binding effects just by monitoring changes in the quality factor (Q-factor) of a single harmonic frequency. A theory with a detailed procedure of mass extraction from the Q-factor is developed. In air, the Q-factor depends on the analyte mass and known air damping, while the impact of the intrinsic dissipation is negligibly small. We find that the highest mass sensitivity (for considered resonator dimensions ∼zg) can be achieved for the rarely measured lateral mode, whereas the commonly detected flexural mode yields the lowest sensitivity. Validity of the proposed procedure is confirmed by extracting the mass of heavy analytes (>GDa) made of protein and Escherichia coli bacteria cells, and the ragweed pollen nanoparticle adsorbed on the surface of the nanomechanical resonator(s) in air, of which the required changes in the Q-factor were previously experimentally measured. Our results open a doorway for rapid detection of viruses and bacteria cells using standard nanomechanical mass sensors.


Assuntos
Nanopartículas , Nanotecnologia , Espectrometria de Massas , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...