Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37962201

RESUMO

BACKGROUND: Traumatic injury with subsequent hemorrhage is one of the leading causes of mortality among military personnel and civilians alike. Post traumatic hemorrhage accounts for 40-50% of deaths in severe trauma patients occurring secondary to direct vessel injury or the development of trauma induced coagulopathy (TIC). Hyperfibrinolysis plays a major role in TIC and its presence increases a patient's risk of mortality. Early therapeutic intervention with intravenous (IV) tranexamic acid (TXA) prevents development of hyperfibrinolysis and subsequent TIC leading to decreased mortality. However, obtaining IV access in an austere environment can be challenging. In this study, we evaluated the efficacy of intramuscular (IM) versus IV TXA at preventing hyperfibrinolysis in a hemorrhaged swine. METHODS: Yorkshire cross swine were randomized on the day of study to receive IM or IV TXA or no treatment. Swine were sedated, intubated, and determined to be hemodynamically stable prior to experimentation. Controlled hemorrhaged was induced by the removal of 30% total blood volume. After hemorrhage, swine were treated with 1000 mg of IM or IV TXA. Control animals received no treatment. Thirty minutes post TXA treatment, fibrinolysis was induced with a 50 mg bolus of tissue plasminogen activator (tPA). Blood samples were collected to evaluate blood TXA concentrations, blood gases, blood chemistry, and fibrinolysis. RESULTS: Blood TXA concentrations were significantly different between administration routes at the early timepoints, but were equivalent by 20 minutes after injection, remaining consistently elevated for up to three hours post administration. Induction of fibrinolysis resulted in 87.18 ± 4.63% lysis in control animals, compared to swine treated with IM TXA 1.96 ± 2.66 % and 1.5 ± 0.42% lysis in the IV TXA group. CONCLUSION: In the large swine model of hemorrhage with hyperfibrinolysis, IM TXA is bioequivalent and equally efficacious in preventing hyperfibrinolysis as IV TXA administration.

2.
Toxicol Sci ; 191(1): 90-105, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36326479

RESUMO

Cyanide-a fast-acting poison-is easy to obtain given its widespread use in manufacturing industries. It is a high-threat chemical agent that poses a risk of occupational exposure in addition to being a terrorist agent. FDA-approved cyanide antidotes must be given intravenously, which is not practical in a mass casualty setting due to the time and skill required to obtain intravenous access. Glyoxylate is an endogenous metabolite that binds cyanide and reverses cyanide-induced redox imbalances independent of chelation. Efficacy and biochemical mechanistic studies in an FDA-approved preclinical animal model have not been reported. Therefore, in a swine model of cyanide poisoning, we evaluated the efficacy of intramuscular glyoxylate on clinical, metabolic, and biochemical endpoints. Animals were instrumented for continuous hemodynamic monitoring and infused with potassium cyanide. Following cyanide-induced apnea, saline control or glyoxylate was administered intramuscularly. Throughout the study, serial blood samples were collected for pharmacokinetic, metabolite, and biochemical studies, in addition, vital signs, hemodynamic parameters, and laboratory values were measured. Survival in glyoxylate-treated animals was 83% compared with 12% in saline-treated control animals (p < .01). Glyoxylate treatment improved physiological parameters including pulse oximetry, arterial oxygenation, respiration, and pH. In addition, levels of citric acid cycle metabolites returned to baseline levels by the end of the study. Moreover, glyoxylate exerted distinct effects on redox balance as compared with a cyanide-chelating countermeasure. In our preclinical swine model of lethal cyanide poisoning, intramuscular administration of the endogenous metabolite glyoxylate improved survival and clinical outcomes, and ameliorated the biochemical effects of cyanide.


Assuntos
Cianetos , Intoxicação , Suínos , Animais , Cianetos/toxicidade , Modelos Animais de Doenças , Antídotos/farmacologia , Antídotos/uso terapêutico , Hemodinâmica , Glioxilatos/uso terapêutico , Intoxicação/tratamento farmacológico
3.
Clin Toxicol (Phila) ; 60(1): 95-101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34142637

RESUMO

BACKGROUND: Cyanide is a rapid acting, lethal, metabolic poison and remains a significant threat. Current FDA-approved antidotes are not amenable or efficient enough for a mass casualty incident. OBJECTIVE: The objective of this study is to evaluate short and long-term efficacy of intramuscular aqueous dimethyl trisulfide (DMTS) on survival and clinical outcomes in a swine model of cyanide exposure. METHODS: Anesthetized swine were instrumented and acclimated until breathing spontaneously. Potassium cyanide infusion was initiated and continued until 5 min after the onset of apnea. Subsequently, animals were treated with intramuscular DMTS (n = 11) or saline control (n = 10). Laboratory values and DMTS blood concentrations were assessed at various time points and physiological parameters were monitored continuously until the end of the experiment unless death occurred. A subset of animals treated with DMTS (n = 5) were survived for 7 days to evaluate muscle integrity by repeat biopsy and neurobehavioral outcomes. RESULTS: Physiological parameters and time to apnea were similar in both groups at baseline and at time of treatment. Survival in the DMTS-treated group was 90% and 30% in saline controls (p = 0.0034). DMTS-treated animals returned to breathing at 12.0 ± 10.4 min (mean ± SD) compared to 22.9 ± 7.0 min (mean ± SD) in the 3 surviving controls. Blood collected prior to euthanasia showed improved blood lactate concentrations in the DMTS treatment group; 5.47 ± 2.65 mmol/L vs. 9.39 ± 4.51 mmol/L (mean ± SD) in controls (p = 0.0310). Low concentrations of DMTS were detected in the blood, gradually increasing over time with no elimination phase observed. There was no mortality, histological evidence of muscle trauma, or observed adverse neurobehavioral outcomes, in DMTS-treated animals survived to 7 days. CONCLUSION: Intramuscular administration of aqueous DMTS improves survival following cyanide poisoning with no observed long-term effects on muscle integrity at the injection site or adverse neurobehavioral outcomes.


Assuntos
Antídotos , Sulfetos , Animais , Antídotos/farmacologia , Antídotos/uso terapêutico , Cianetos , Humanos , Cianeto de Potássio , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...